3x - 2y - 1 = 0
y = 5x + 4
3x - 2(5x + 4) - 1 = 0
3x - 10x - 8 - 1 = 0
-7x - 9 = 0
-7x = 9
x = -9/7
y = 5x + 4
y = 5(-9/7) + 4
y = -45/7 + 4
y = -45/7 + 28/7
y = - 17/7
solution is (-9/7, -17/7)
Check the picture below.
using a second for it, since it's a horizontal line, then say hmmm we'll use the y-intercept, or (0, 1), so the equation of a line that passes through (2,1) and (0,1)
Answer:
Given:
To Find:
Step-by-step explanation:
The question is:
Check whether the function:
y = [cos(2x)]/x
is a solution of
xy' + y = -2sin(2x)
with the initial condition y(π/4) = 0
Answer:
To check if the function y = [cos(2x)]/x is a solution of the differential equation xy' + y = -2sin(2x), we need to substitute the value of y and the value of the derivative of y on the left hand side of the differential equation and see if we obtain the right hand side of the equation.
Let us do that.
y = [cos(2x)]/x
y' = (-1/x²) [cos(2x)] - (2/x) [sin(2x)]
Now,
xy' + y = x{(-1/x²) [cos(2x)] - (2/x) [sin(2x)]} + ([cos(2x)]/x
= (-1/x)cos(2x) - 2sin(2x) + (1/x)cos(2x)
= -2sin(2x)
Which is the right hand side of the differential equation.
Hence, y is a solution to the differential equation.