The correct transformation is a rotation of 180° around the origin followed by a translation of 3 units up and 1 unit to the left.
<h3>
Which transformation is used to get A'B'C'?</h3>
To analyze this we can only follow one of the vertices of the triangle.
Let's follow A.
A starts at (3, 4). If we apply a rotation of 180° about the origin, we end up in the third quadrant in the coordinates:
(-3, -4)
Now if you look at A', you can see that the coordinates are:
A' = (-4, -1)
To go from (-3, -4) to (-4, -1), we move one unit to the left and 3 units up.
Then the complete transformation is:
A rotation of 180° around the origin, followed by a translation of 3 units up and 1 unit to the left.
If you want to learn more about transformations:
brainly.com/question/4289712
#SPJ1
Answer:
1. D
2. AE (with a line above the 2 letters)
3. AC (with an arrowpointing to the right above the 2 letters)
4. B, A, and C
Answer:
If every line parallel to two lines intersects both regions in line segments of equal length, then the two regions have equal areas. In the case of your problem, every line parallel to the bases of the two parallelograms will intersect them in lines segments, each with a width of ℓ.