Answer:
Explanation:
Hello,
Considering the chemical reaction, the enthalpy of reaction is given by:
ΔH°rxn=ΔfHCO2+ΔfHH2O-ΔfHC8H18
(ΔfHO2=0)
Taking into account that the reaction produces energy, ΔH°rxn is negative. No, solving for ΔfHC8H18:
ΔfHC8H18=-ΔH°rxn+8*ΔfHCO2+9*ΔfHH2O
ΔfHC8H18=-(-5104.1 kJ/mol)+9*(-292.74kJ/mol)+8*(-393.5 kJ/mol)
ΔfHC8H18=-678.56 kJ/mol
Best regards.
Answer:
Explanation:
a) The forward reaction is exothermic, hence when temperature is increased the equilibrium shift towards the reactants side to get rid of the excess energy. This will mean that more reactants are produced decreasing yield
b) There are a fewer number of moles of gas on the right side compared to the left side (Just count the coefficients before each compound) so a higher pressure will mean that the equilibrium will shift towards the products side in order to decrease the pressure. This will mean that more products are formed increasing yield
c) When something is powdered it's surface area to volume ratio increases. A higher surface area means that the particles around it have more area to work on so the frequency of collisions will increase increasing the rate of reaction. This is why iron is powdered.
Answer:
C 2
Explanation:
2Nal + Cl2 → 2NaCl + I2
This is balanced equation
Answer:
Carbon can be found in the ocean, rocks, and the atmosphere around us.
Answer:
a. 581.4 Pa
b. 3.33x10⁻⁴ mol/L
c. 3.49x10⁻⁴ mol/L
d. 0.015 g/L
Explanation:
a. By the Raoult's Law, the partial pressure of a component of a gas mixture is its composition multiplied by the total pressure, so:
pA = 0.9532*6.1
pA = 5.81452 mbar
pA = 5.814x10⁻³ bar
1 bar ----- 10000 Pa
5.814x10⁻³ bar--- pA
pA = 581.4 Pa
b. Considering the mixture as an ideal gas, let's assume the volume as 1,000 L, so by the ideal gas law, the total number of moles is:
PV = nRT
Where P is the pressure (610 Pa), V is the volume (1 m³), n is the number of moles, R is the gas constant (8.314 m³.Pa/mol.K), and T is the temperature.
n = PV/RT
n = (610*1)/(8.314*210)
n = 0.3494 mol
The number of moles of CO₂ is (V = 0.9532*1 = 0.9532 m³):
n = PV/RT
n = (581.4*0.9532)/(8.314*210)
n = 0.3174 mol
cA = n/V
cA = 0.3174/953.2
cA = 3.33x10⁻⁴ mol/L
c. c = ntotal/Vtotal
c = 0.3494/1000
c = 3.49x10⁻⁴ mol/L
d. The molar masses of the gases are:
CO₂: 44 g/mol
N₂: 28 g/mol
Ar: 40 g/mol
O₂: 32 g/mol
CO: 28 g/mol
The molar mass of the mixture is:
M = 0.9532*44 + 0.027*28 + 0.016*40 + 0.0008*28 = 43.36 g/mol
The mass concentration is the molar concentration multiplied by the molar mass:
3.49x10⁻⁴ mol/L * 43.36 g/mol
0.015 g/L