Answer:
a. 174 mL
Explanation:
Let's consider the following reaction.
2 KI(aq) + Pb(NO₃)₂(aq) → 2 KNO₃(aq) + PbI₂(s)
We have 155.0 mL of a 0.112 M lead(II) nitrate solution. The moles of Pb(NO₃)₂ are:
0.1550 L × 0.112 mol/L = 0.0174 mol
The molar ratio of KI to Pb(NO₃)₂ is 2:1. The moles of KI are:
2 × 0.0174 mol = 0.0348 mol
The volume of a 0.200 M KI solution that contains 0.0348 moles is:
0.0348 mol × (1 L / 0.200 mol) = 0.174 L = 174 mL
Answer:
λ = 0.45×10⁻⁶ m
Explanation:
Given data:
Wavelength of blue light = ?
Frequency of blue light = 6.69×10¹⁴ s⁻¹
Solution:
Formula;
Speed of wave = wavelength × frequency
Speed of wave = 3.00×10⁸ m/s
by putting vales,
3.00×10⁸ m/s = λ × 6.69×10¹⁴ s⁻¹
λ = 3.00×10⁸ m/s / 6.69×10¹⁴ s⁻¹
λ = 0.45×10⁻⁶ m
B) 6
one above one below and 2 on the left and right sides
The theoretical yield of NaBr given that 2.36 moles of FeBr₃ reacts is 7.08 moles
<h3>Balanced equation </h3>
2FeBr₃ + 3Na₂S → Fе₂S₃ + 6NaBr
From the balanced equation above,
2 moles FeBr₃ reacted to produce 6 moles of NaBr
<h3>How to determine the theoretical yield of NaBr</h3>
From the balanced equation above,
2 moles FeBr₃ reacted to produce 6 moles of NaBr
Therefore,
2.36 moles FeBr₃ will react to produce = (2.36 × 6) / 2 = 7.08 moles of NaBr
Therefore,
Thus, the theoretical yield of NaBr is 7.08 moles
Learn more about stoichiometry:
brainly.com/question/14735801
#SPJ1
B i’m pretty sure, because the heavier the better it works