The density of a substance is given by the formula ρ = m/v, where m is the mass of the substance, and v is the volume.
ρ = m/v
ρ = 3.1 g / 4.1 mL
ρ = 31/41 g/mL = 0.756 g/mL = 0.756 g/cm^3
The answer for the first question would be water. It is the substance that is a compound since it is made up of different elements. For the second item, i think the best answer is phosphorus and nitrogen. They are the limiting nutrients. For the last item, the correct answer is reservoirs.
The question is incomplete. The complete question is:
The half-life for the decay of carbon-14 is 5.73x10^3 years. Suppose the activity due to the radioactive decay of the carbon-14 in a tiny sample of an artifact made of woodfrom an archeological dig is measured to be 2.8x10^3 Bq. The activity in a similiar-sized sample of fresh wood is measured to be 3.0x10^3 Bq. Calculate the age of the artifact. Round your answer to 2 significant digits.
Answer:
570 years
Explanation:
The activity of the fresh sample is taken as the initial activity of the wood sample while the activity measured at a time t is the present activity of the wood artifact. The time taken for the wood to attain its current activity can be calculated from the formula shown in the image attached. The activity at a time t must always be less than the activity of a fresh wood sample. Detailed solution is found in the image attached.
With that informatio you can:
1) Write the chemical equation
2) Balance the chemical equation
3) State the molar ratios
4) Predict if precipitation occurs.
I will do all four, for you:
1) Chemical equation:
mercury(I) nitrate potassium bromide mercury(I) bromide potassium nitrate
<span>Hg2(NO3)2 + KBr → Hg2Br2 + KNO<span>3
2) Balanced chemical equation
</span></span>
<span>Hg2(NO3)2 + 2KBr → Hg2Br2 + 2KNO<span>3
3) Molar ratios or proportions:
1 mol </span></span><span>Hg2(NO3)2 : 2 mol KBr : 1 mol Hg2Br2 : 2 mol KNO<span>3
4) Prediction of precipitation.
You can use the solubility rules or a table of solubilities. I found in a table of solutiblities that mercury(I) bromide is insoluble and potassium bromide is soluble, Then you can predict that the precipitation of mercury(I) bromide will occur.
</span></span>