Answer: The frequency of this light is
.
Explanation:-
To calculate the frequency of light, we use the equation:

where,
= wavelength of the light =

c = speed of light = 
= frequency of light = ?



The frequency of this light is
.
Radiation is the answer fam..............................
Answer:
Br
|
Br-P-Br
|
Br
Explanation:
To calculate the valance electrons, look at the periodic table to find the valance electrons for each atom and add them together. P is in column 5A, so it has 5, Br is in column 7A, so it has 7 (multiply by 4 since there are 4 Br atoms to give 28) and there is a 1- charge, so add one more electron. 5+28+1=34, so there are 34 electrons to place. P would be the central atom, so place it in the middle. Place each Br around the P (as shown above) with a a single line connecting it. Each line represents 2 electrons, so 8 total have been place, leaving 26 remaining. Place 6 electrons around each Br (2 on each of the unbonded sides), which leaves 2 electrons remaining. The remaining pair of unbound electrons will be attached to the P between any two Br atoms. Phosphorus doesn't have to follow the octet rule, so it actually ends up with 10 valance electrons.
Answer:
Volume would be 13
Explanation:
Divide the mass by the density
65/5
Answer:
This question appears incomplete
Explanation:
However, the chance of finding one isotope of an element is not the same for all elements because some elements/isotopes are more in abundance than some other elements/isotopes; for example the most abundant element on earth is nitrogen-14, hence the chances of finding nitrogen-14 in nature is higher the chances of finding any isotope of Xenon.
Also, while isotopes occur naturally, some do not. Hence, the chances of finding a naturally occurring isotopes (no matter how rare like Xenon-126) is higher than the chances of finding artificial radioisotopes like technetium-95 and promethium-146 (whose chances are zero because they cannot be found naturally occurring).