Ok, I think this is right but I am not sure:
Q = ϵ
0AE
A= π π
r^2
=(8.85x10^-12 C^2/Nm^2)
( π π (0.02m)^2)
(3x10^6 N/C) =3.3x10^-8 C = 33nC N = Q/e = (3.3x10^-8 C)/(1.60x10^-19 C/electron) = 2.1x10^11 electrons
The area of the velocity time graph gives displacement of the body true or false?
The answer this is true.
In the question it is already given that the football player is 80 kg.
Then the mass of the football player = 80 kg
Velocity at which the football player is running = 8 m/s
<span>Kinetic Energy = 0.5 • mass • square of velocity
Now we have to put the known data in this equation to find the actual velocity of the footballer.
</span> <span></span>So
Kinetic Energy of the footballer = 0.5 * 80 * (8 * 8)
= 0.5 * 80 * 64
= 2560
So the Kinetic energy of the footballer is 2560 joules
Answer:
(a) Angular acceleration is 1.112 rad/s².
(b) Average angular velocity is 2.78 rad/s .
Explanation:
The equation of motion in Rotational kinematics is:
θ = θ₀ + 0.5αt²
Here θ is angular displacement at time t, θ₀ is angular displacement at time t=0, t is time and α is constant angular acceleration.
(a) According to the problem, θ is 13.9 rad, θ₀ is zero as it is at rest and t is 5 s. Put these values in the above equation:
13.9 = 0 + 0.5α(5)²
α = 1.112 rad/s²
(b) The equation of average angular velocity is:
ω = Δθ/Δt
ω = 
ω = 2.78 rad/s
The answer is a property of density. The higher the density, the higher the pressure at the bottom.
Pressure = mass / Area. So given that the 4 samples occupy the same area at the bottom, the mass is going to be the determining factor. Per given volume, mercury has the largest mass. The answer is A