Answer:
The resulting magnetic force on the wire is -1.2kN
Explanation:
The magnetic force on a current carrying wire of length 'L' with current 'I' in a magnetic field B is
F = I (L*B)
Finding (L * B) , where L = (2, 0, 0)m , B = (30, -40, 0)
L x B =
= (0, 0, -80)
we can now solve
F = I (L x B) = I (-80)
F = -1200 kmN
F = -1200 kN * 10⁻³
F = -1.2kN
Answer:
7.328m/s
Explanation:
Given parameters:
height of table = 0.68m
final velocity of the ball = 6m/s
Unknown:
Initial velocity of ball = ?
Solution:
To solve this problem, we are going to employ the appropriate motion equation.
We must understand that this fall occurs in the presence of gravity;
V = U + 2gH
Where;
V is the final velocity
U is the initial velocity
g is the acceleration due to gravity
H is the height of the pool table
Since U is the unknown, let us make it the subject of the expression;
U = V - 2gH
U = 6 - (2 x 9.8 x 0.68) = 7.328m/s(deceleration)
F equals 3N with respect to the circle's center, moving in the same direction as the centripetal acceleration.
<h3>How much centripetal force is there in a centrifuge?</h3>
Centripetal force is the force that pushes an item in the direction of its center of curvature. It is fundamental to how a centrifuge operates.
<h3>On a roller coaster, what is centripetal force?</h3>
An item travelling in a circle is pushed inward toward what is known as the center of rotation, which is essentially what a roller coaster accomplishes when it travels through a loop. The force that maintains an object moving along a curved route is this pull toward the center, or centripetal force.
To know more about centripetal force visit:-
brainly.com/question/11324711
#SPJ4
Answer:
hold up nvm Reaction with oxygen
Explanation:
Answer:
a=2.378 m/s^2
Explanation:
a=Δv/Δt------eq(1)
Δv=Vf-Vi=120 km/h-0 km/h=120 km/h
or Δv=33.3 m/sec
or time=t=14s
putting values in eq(1)
a=33.3/14
a=2.378 m/s^2