You have to divide 3000 miles with the 5 and it gives you a velocity of 600
<h3>I think it B The group(s) that gets the special treatment.</h3><h3 /><h3>I hope this is correct.</h3><h3 /><h3 /><h3 />
Answer:
option (E) is correct.
Explanation:
Work done is defined as the product of force and the distance in the direction of force.
force, f = 100 N
Coefficient of friction, = 0.25
distance = 15 m
So, net force F = f - friction force
F = 100 - 0.25 x m g
Work = (100 - 0.25 mg) x d cosθ
For minimum work, the angle should be maximum.
So, the value of θ is 76°.
thus, option (E) is correct.
Answer and Explanation:
This experiment is known as Lenz's tube.
The Lenz tube is an experiment that shows how you can brake a magnetic dipole that goes down a tube that conducts electric current. The magnet, when falling, along with its magnetic field, will generate variations in the magnetic field flux within the tube. These variations create an emf induced according to Faraday's Law:

This emf induced on the surface of the tube generates a current within it according to Ohm's Law:

This emf and current oppose the flux change, therefore a field will be produced in such a direction that the magnet is repelled from below and is attracted from above. The magnitude of the flux at the bottom of the magnet increases from the point of view of the tube, and at the top it decreases. Therefore, two "magnets" are generated under and above the dipole, which repel it below and attract above. Finally, the dipole feels a force in the opposite direction to the direction of fall, therefore it falls with less speed.
Pascal's law of fluid transfer states that when there is an increase in fluid pressure, the rest of the extrinsic variables also increases. For example, in a flow of liquid in an orifice, there is a contraction of diameter in the orifice part. The fluid that will go in there increases in pressure and thereby an increase in velocity as well.