We can apply the law of conservation of energy here. The total energy of the proton must remain constant, so the sum of the variation of electric potential energy and of kinetic energy of the proton must be zero:

which means

The variation of electric potential energy is equal to the product between the charge of the proton (q=1eV) and the potential difference (

):

Therefore, the kinetic energy gained by the proton is

<span>And since the initial kinetic energy of the proton was zero (it started from rest), then this 1000 eV corresponds to the final kinetic energy of the proton.</span>
A proton in a particle accelerator is traveling at a speed of 0.99c has a speed magnitude of 2.97 x 10⁸ m/s.
<h3>What is speed of proton?</h3>
The speed of a proton is the rate at which a proton is moving through a given space.
The given speed of the proton is 0.99c
where;
<h3>What is speed of light?</h3>
The speed of light in vacuum, commonly denoted c, is a universal physical constant that is important in many areas of physics.
The value of speed of light in a vacuum is given as 3 x 10⁸ m/s.
The speed of the proton is calculated as follows;
v = 0.99 x 3 x 10⁸ m/s.
v = 2.97 x 10⁸ m/s.
Thus, a proton in a particle accelerator is traveling at a speed of 0.99c has a speed magnitude of 2.97 x 10⁸ m/s.
Learn more about speed of proton here: brainly.com/question/14663642
#SPJ1
Answer:
(a) Magnitude of Vector = 207.73 m
(b) Direction = 65.48°
Explanation:
(a)
The formula to find out the magnitude of a resultant vector with the help of its x and y components is given as follows:

<u>Magnitude of Vector = 207.73 m</u>
(b)
For the direction of the vector we have the formula:

<u>Direction = 65.48°</u>
Answer:
Part a)
When spring compressed by 2 cm
H = 1.47 m
Part b)
When spring is compressed by 4 cm
H = 5.94 m
Explanation:
Part a)
As we know that the spring is compressed and released
so here spring potential energy is converted into gravitational potential energy at its maximum height
So we will have


so we have

Part b)
Similarly when spring is compressed by 4 cm
then we have


so we have
