Answer:
- ength (l) : (10-2*5/3) = 20/3
- width(w): (10 - 2*5/3) = 20/3
- height(h): 5/3
Step-by-step explanation:
Let x is the side of identical squares
By cutting out identical squares from each corner and bending up the resulting flaps, the dimension are:
- length (l) : (10-2x)
- width(w): (10-2x)
- height(h): x
The volume will be:
V = (10-2x) (10-2x) x
<=> V = (10x-2
) (10-2x)
<=> V = 100x -20
- 20
+ 4
<=> V = 4
- 40
+ 100x
To determine the dimensions of the largest box that can be made, we need to use the derivative and and set it to zero for the maximum volume
dV/dx = 12
-80x + 100
<=> 12
-80x + 100 =0
<=> x = 5 or x= 5/3
You know 'x' cannot be 5 , because if we cut 5 inch squares out of the original square, the length and the width will be 0. So we take x = 5/3
=>
- length (l) : (10-2*5/3) = 20/3
- width(w): (10 - 2*5/3) = 20/3
- height(h): 5/3
<span>Subtract u from 7, then divide v by the result</span>
v : (7 - u)
The answer is A, hope this helps :]
Slope = (y2 - y1) / (x2 - x1)
= (2 - 4 ) / (1 - 3 )
= -2/-2
= 1
Answer is A. 1