Answer:
![\boxed{\frac{153}{100}\:\:Or\:\:1.53}](https://tex.z-dn.net/?f=%5Cboxed%7B%5Cfrac%7B153%7D%7B100%7D%5C%3A%5C%3AOr%5C%3A%5C%3A1.53%7D)
Step-by-step explanation:
Let the number be
.
Then,
![33\frac{1}{3} \tmes n=51](https://tex.z-dn.net/?f=33%5Cfrac%7B1%7D%7B3%7D%20%5Ctmes%20n%3D51)
This implies that;
![\frac{100}{3} n=51](https://tex.z-dn.net/?f=%5Cfrac%7B100%7D%7B3%7D%20n%3D51)
We multiply both sides by
to obtain;
![\frac{3}{100} \times \frac{100}{3}n=\frac{3}{100} \times 51](https://tex.z-dn.net/?f=%5Cfrac%7B3%7D%7B100%7D%20%5Ctimes%20%5Cfrac%7B100%7D%7B3%7Dn%3D%5Cfrac%7B3%7D%7B100%7D%20%5Ctimes%2051)
![\Rightarrow n=\frac{3}{100} \times 51](https://tex.z-dn.net/?f=%5CRightarrow%20n%3D%5Cfrac%7B3%7D%7B100%7D%20%5Ctimes%2051)
![\Rightarrow n=\frac{153}{100}](https://tex.z-dn.net/?f=%5CRightarrow%20n%3D%5Cfrac%7B153%7D%7B100%7D)
Or
![\Rightarrow n=1.53](https://tex.z-dn.net/?f=%5CRightarrow%20n%3D1.53)
Answer:
Step-by-step explanation:
Michael works for 25 hours
Answer:
Step-by-step explanation:
A function is given to us and we need to find the x Intercepts of the graph of the given function . The function is ,
For finding the x intercept , <u>equate the given function with 0, we have ;</u>
Equate each factor with 0 ,
Divide both sides by 2 ,
Again ,
Taking squareroot on both sides,
Add 5 to both sides,
Similarly ,
<u>Hence</u><u> the</u><u> </u><u>x </u><u>Intercepts</u><u> </u><u>are </u><u>-</u><u>4</u><u> </u><u>,</u><u> </u><u>0</u><u> </u><u>and </u><u>5</u><u> </u><u>.</u>
{ See attachment also for graph } .
How To Find Inverses:
1. First, replace f(x) with y . ...
2. Replace every x with a y and replace every y with an x .
3. Solve the equation from Step 2 for y . ...
4. Replace y with f−1(x) f − 1 ( x ) . ...
5. Verify your work by checking that (f∘f−1)(x)=x ( f ∘ f − 1 ) ( x ) = x and (f−1∘f)(x)=x ( f − 1 ∘ f ) ( x ) = x are both true.
Answer:
13) Angle A is 30°
14) Angle A is 45°
15) Angle A is 40°
16) Angle A is 40.5°
Step-by-step explanation:
By the angle sum theorem for the interior angles of a triangle, we have;
13) 130° + 2·x + 3·x = 180°
∴ 2·x + 3·x = 180° - 130° = 50°
2·x + 3·x = 5·x = 50°
x = 50°/5 = 10°
∠A = 3·x = 3 × 10° = 30°
∠A = 30°
14) 3·x + 9 + 4·x + 9 + 78° = 180°
7·x + 18 + 78° = 180°
7·x = 180° - (18 + 78)° = 180° - 96° = 84°
x = 84°/7 = 12°
∠A = 3·x + 9 = 3 × 12° + 9 = 45°
∠A = 45°
15) 90° + x + 51 + x + 61 = 180°
∴ x + 51 + x + 61 = 180° - 90° = 90°
2·x + 112 = 90°
2·x = (90 - 112)° = -22°
x = -22°/2 = -11°
x = -11°
∠A = x + 51 = -11° + 51 = 40°
∠A = 40°
16) x + 79 + x + 49 + 70° = 180°
x + x = (180 - 70 - 79 - 48)° = -17°
2·x = -17°
x = -17°/2 = -8.5°
x = -8.5°
∠A = x + 49 = (-8.5 + 49)° = 40.5°
∠A = 40.5°.