Answer:
Explanation:
To calculate the cell potential we use the relation:
Eº cell = Eº oxidation + Eº reduction
Now in order to determine which of the species is going to be oxidized, we have to remember that the more the value of the reduction potential is negative, the greater its tendency to be oxidized is. In electrochemistry we use the values of the reductions potential in the tables for simplicity because the only thing we need to do is change the sign of the reduction potential for the oxized species .
So the species that is going to be oxidized is the Aluminium, and therefore:
Eº cell = -( -1.66 V ) + 0.340 V = 5.06 V
Equally valid is to write the equation as:
Eº cell = Eº reduction for the reduced species - Eº reduction for the oxidized species
These two expressions are equivalent, choose the one you fell more comfortable but be careful with the signs.
Partial pressure of gas A is 1.31 atm and that of gas B is 0.44 atm.
The partial pressure of a gas in a mixture can be calculated as
Pi = Xi x P
Where Pi is the partial pressure; Xi is mole fraction and P is the total pressure of the mixture.
Therefore we have Pa = Xa x P and Pb = Xb x P
Let us find Xa and Xb
Χa = mol a/ total moles = 2.50/(2.50+0.85) = 2.50/3.35 = 0.746
Xb = mol b/total moles = 0.85/(2.50+0.85) = 0.85/3.35 = 0.254
Total pressure P is given as 1.75 atm
Pa = Xa x P = 0.746 x 1.75 = 1.31atm
Partial pressure of gas A is 1.31 atm
Pb = Xb x P = 0.254 x 1.75 = 0.44atm
Partial pressure of gas B is 0.44 atm.
Learn more about Partial pressure here:
brainly.com/question/15302032
#SPJ4
An aqueous solution in a 55 gallon (208 l drum), characterized by minimal buffering capacity, received 4kg of phenol and 1.5 kg of sodium phenate. What is the ph of the solution. The pka of phenol = 9.98. Mw of phenol and sodium phenate are 94 g/mol and 116 g/mol, respectively.
Volume of solution = 55 gallons = 208.2 L [ 1 gallon = 3.78 L]
moles of phenol = mass / molar mass = 4000 g / 94 = 42.55 moles
moles of sodium phenate = mass / molar mass = 1500 / 116 = 12.93 moles
pKa of phenol = 9.98
We know that the pH of buffer is calculated using Hendersen Hassalbalch's equation
pH = pKa + log [salt] / [acid]
volume is same for both the sodium phenate and phenol has we can directly take the moles of each in the formula
pH = 9.98 + log [12.93 / 42.55] = 9.46