<h3>
Answer:</h3>
2.624 g
<h3>
Explanation:</h3>
The equation for the reaction is given as;
- CuSO₄(aq) + 2NaOH(aq) → Cu(OH)₂(s) + Na₂SO₄(aq)
- Volume of CuSO₄ as 46.0 mL;
- Molarity of CuSO₄ as 0.584 M
We are required to calculate the mass of Cu(OH)₂ precipitated
- We are going to use the following steps;
<h3>Step 1: Calculate the number of moles of CuSO₄ used</h3>
Molarity = Number of moles ÷ Volume
To get the number of moles;
Moles = Molarity × volume
= 0.584 M × 0.046 L
= 0.0269 moles
<h3>
Step 2: Calculate the number of moles of Cu(OH)₂ produced </h3>
- From the equation 1 mole of CuSO₄ reacts to give out 1 mole of Cu(OH)₂
- Therefore; Mole ratio of CuSO₄ to Cu(OH)₂ is 1 : 1.
Thus, Moles of CuSO₄ = Moles of Cu(OH)₂
Hence, moles of Cu(OH)₂ = 0.0269 moles
<h3>
Step 3: Calculate the mass of Cu(OH)₂</h3>
To get mass we multiply the number of moles with the molar mass.
Mass = Moles × Molar mass
Molar mass of Cu(OH)₂ is 97.561 g/mol
Therefore;
Mass of Cu(OH)₂ = 0.0269 moles × 97.561 g/mol
= 2.624 g
Thus, the mass of Cu(OH)₂ that will precipitate is 2.624 g
The energy produced by burning : -32.92 kJ
<h3>Further explanation</h3>
Delta H reaction (ΔH) is the amount of heat change between the system and its environment
(ΔH) can be positive (endothermic = requires heat) or negative (exothermic = releasing heat)
The enthalpy and heat(energy) can be formulated :

The enthalpy of combustion of naphthalene (MW = 128.17 g/mol) is -5139.6 kJ/mol.
The energy released for 0.8210 g of naphthalene :

Answer:
89.88 g
Explanation:
Atomic Mass of Ar: 39.948
Mass = moles * AM
Replacing moles = 2.25 and AM = 39.948 you get the mass of Ar:
Mass = 2.25 * 39.948
Mass = 89.88 g
Answer:s the temperature is increased, fluoroantimonic acid decomposes and generates hydrogen fluoride gas (hydrofluoric acid). ... 1 Fluoroantimonic acid has a H0 (Hammett acidity function) value of -31.3. Dissolves glass and many other materials and protonates nearly all organic compounds (such as everything in your body)
tall me is this what you looking for