Answer:
Yes it is because heating expands molecules of solution which helps to form a solution as it acts as solvent solution.
Explanation:
Answer: A) This reaction will be spontaneous only at high temperatures
Explanation:
= +ve, reaction is non spontaneous
= -ve, reaction is spontaneous
= 0, reaction is in equilibrium
Using Gibbs Helmholtz equation:
Given :
Thus the value of
is negative and spontaneous when temperature is high.
Answer:
NaNO3 (solubility = 89.0 g/100 g H2O)
Explanation:
The solubility of a specie is the amount of solute that will dissolve in one litre of the solvent. Solubility is usually expressed in units of molarity.
Now let us calculate the molarity of the NaNO3 (solubility = 89.0 g/100 g H2O)
Molar mass of NaNO3= 23+14+3(16)= 85gmol-1
Mass of solute=89.0g
Amount of solute= mass of NaNO3/molar mass of NaNO3
Amount of solute= 89.0g/85.0 gmol-1
= 1.0moles of NaNO3
Note that 100g of water=100cm^3 of water.
If 1.0 moles of NaNO3 dissolve in 100cm^3 or water therefore,
x moles of NaNO3 will dissolve in 1000cm^3 of water
x= 1.0 × 1000/ 100
x= 10.0 moles of NaNO3
N₂O₃
3 moles oxgyen atoms in 1 mole .
hope this helps!
Answer:
56.9 mmoles of acetate are required in this buffer
Explanation:
To solve this, we can think in the Henderson Hasselbach equation:
pH = pKa + log ([CH₃COO⁻] / [CH₃COOH])
To make the buffer we know:
CH₃COOH + H₂O ⇄ CH₃COO⁻ + H₃O⁺ Ka
We know that Ka from acetic acid is: 1.8×10⁻⁵
pKa = - log Ka
pKa = 4.74
We replace data:
5.5 = 4.74 + log ([acetate] / 10 mmol)
5.5 - 4.74 = log ([acetate] / 10 mmol)
0.755 = log ([acetate] / 10 mmol)
10⁰'⁷⁵⁵ = ([acetate] / 10 mmol)
5.69 = ([acetate] / 10 mmol)
5.69 . 10 = [acetate] → 56.9 mmoles