Answer:
N1ga figure it out
Step-by-step explanation:
Answer:
The 96% confidence interval estimate for the mean daily number of minutes that BYU students spend on their phones in fall 2019 is between 306.65 minutes and 317.35 minutes.
Step-by-step explanation:
Confidence interval normal
We have that to find our
level, that is the subtraction of 1 by the confidence interval divided by 2. So:

Now, we have to find z in the Ztable as such z has a pvalue of
.
That is z with a pvalue of
, so Z = 2.054.
Now, find the margin of error M as such

In which
is the standard deviation of the population and n is the size of the sample.

The lower end of the interval is the sample mean subtracted by M. So it is 312 - 5.35 = 306.65 minutes
The upper end of the interval is the sample mean added to M. So it is 312 + 5.35 = 317.35 minutes
The 96% confidence interval estimate for the mean daily number of minutes that BYU students spend on their phones in fall 2019 is between 306.65 minutes and 317.35 minutes.
All of the shown choices, also every opposite angles are equal.
W=15cm
A=360 cm^2
l=?
A=w•l
360=15•l
l=360/15
l=24 cm
Good luck.
Answer:
jhshehey ekjrjrur ieyehrof8 iehgejti