Answer:
Step-by-step explanation:
The altitude to the hypotenuse of a right triangle create two smaller triangles, all of which are similar to the original. This means corresponding sides are proportional.
3. Using the above relationship, ...
short-side/hypotenuse = 8/y = y/(8+23)
y^2 = 8·31
y = 2√62
__
long-side/hypotenuse = z/(8+23) = 23/z
z^2 = 23·31
z = √713
__
short-side/long-side = 8/x = x/23
x^2 = 8·23
x = 2√46
_____
4. The picture is fuzzy, but we think the lengths are 25 and 5. If they're something else, use the appropriate numbers. Using the same relations we used for problem 3,
y = √(5·25) = 5√5 . . . . . . . = √(short segment × hypotenuse)
z = √(20·25) = 10√5 . . . . . = √(long segment × hypotenuse)
x = √(5·20) = 10 . . . . . . . . . = √(short segment × long segment)
Answer:
The answer is 7(5x+4y)
Step-by-step explanation:
Well you would have to first find what number is able to go in both numbers.
7 can go into 35 by 7·5
7 can also go into 28 by 7·4
So now we would simplify this by putting this in a distributive equation.
If you have any questions feel free to ask in the comments - Mark
Step 1: Set the two equations equal to each other and solve for x.
3x -5 = 6x - 8
3x + (-5+5) = 6x -8 + 5
(3x - 6x) = (6x - 6x) - 3
-3x/-3 = -3/-3
x = 1
Step 2: To solve for y take one of the given equation of your choice (for the purpose of this explanation I will only do y = 3x - 5) and replace x with 1, then solve for y
y = 3(1) - 5
y = 3 - 5
y = -2
(1,-2)
Check:
-2 = 3(1) - 5 ---> - 2 = -2
-2 = 6(1) - 8 ---> -2 = -2
Hope this helped!
in order to know the greatest common multiple of 84 you would have to compare it to another number