Answer:
A
Step-by-step explanation:
The higher the negative number is the farther left it will be.
The names PNM and MPN are perfectly valid. The order of the letters doesn't matter. In fact, there are 6 ways to name this plane if we just use the 3 letters. If we include "plane Z", then there are 7 total ways to name the plane.
For some reason, your teacher wants P to be the third letter as s/he mentioned MNP and NMP. But again, the order doesn't matter.
Answer:
-2
Step-by-step explanation:
given 2 points on a line (x1, yx) and (x2,y2)
the formula for slope, m = (y2-y1) / (x2-x1)
in this case,
x1 = 4, y1 = 3, x2 = 2, y2 = 7
Hence,
m = (7-3) / (2-4) = 4 / -2 = -2
Answer:
10x+391≥503
Step-by-step explanation:
let x = # of sets
If you need at least 503 knives, both the sets of knives and the initial amount we already have (391) must add to have a number of knives greater than or equal to the minimum required amount.
We are given with a limit and we need to find it's value so let's start !!!!
But , before starting , let's recall an identity which is the <em>main key</em> to answer this question
Consider The limit ;
Now as directly putting the limit will lead to <em>indeterminate form 0/0.</em> So , <em>Rationalizing</em> the <em>numerator</em> i.e multiplying both numerator and denominator by the <em>conjugate of numerator </em>

Using the above algebraic identity ;


Now , here we <em>need</em> to <em>eliminate (√x-2)</em> from the denominator somehow , or the limit will again be <em>indeterminate </em>,so if you think <em>carefully</em> as <em>I thought</em> after <em>seeing the question</em> i.e what if we <em>add 4 and subtract 4</em> in <em>numerator</em> ? So let's try !


Now , using the same above identity ;


Now , take minus sign common in <em>numerator</em> from 2nd term , so that we can <em>take (√x-2) common</em> from both terms

Now , take<em> (√x-2) common</em> in numerator ;

Cancelling the <em>radical</em> that makes our <em>limit again and again</em> <em>indeterminate</em> ;

Now , <em>putting the limit ;</em>
