Answer:
(-3,6)
Step-by-step explanation:
There's a formula for this, but it's just reflecting it across the y-axis.
Hope this helped! :)
We're looking for a scalar function
such that
. That is,


Integrate the first equation with respect to
:

Differentiate with respect to
:

Integrate with respect to
:

So
is indeed conservative with the scalar potential function

where
is an arbitrary constant.
Answer:
As given, measure of angle 4 is 70°
Then what would be the measure of ∠8.
Following cases comes into consideration
1. If ∠4 and ∠8 are supplementary angles i.e lie on same side of Transversal, then
∠4 + ∠8=180°
⇒70°+∠8=180° [∠4=70°]
⇒∠8=180°-70°
⇒∠8=110°
<u>2nd possibility</u>
But if these two angles i.e ∠4 and ∠8 forms a linear pair.Then
⇒ ∠4 + ∠8=180°
⇒70°+∠8=180° [∠4=70°]
⇒∠8=180°-70°
⇒∠8=110°
<u>3rd possibility</u>
If ∠4 and ∠8 are alternate exterior angles.
then, ∠4 = ∠8=70°
<u>4th possibility</u>
If If ∠4 and ∠8 are corresponding angles.
then, ∠4 = ∠8=70°
Out of four options given Option A[ 110° because ∠4 and ∠8 are supplementary angles], Option B[70° because ∠4 and ∠8 are alternate exterior angles.] and Option D[70° because ∠4 and ∠8 are corresponding angles.] are Correct.
Answer:
Large avocados should cost $ 1.83 or less to be a good deal.
Step-by-step explanation:
Since there are two types of avocado in the store, some small at $ 0.92 and others larger, to determine at what price large avocados would be a good deal, an equivalence must be established in this regard:
Thus, if two small avocados are equal to one large, buying two small avocados at $ 0.92 the total price would be $ 1.84. Therefore, any large avocado that sells for less than $ 1.84 would be a good deal. Thus, large avocados should cost $ 1.83 or less to be a good deal.