224.9>224.92 hope it helps
Answer:
B.
<h3>step by step explanation</h3>
I hope it's help
Answer:
The percentage of people should be seen by the doctor between 13 and
17 minutes is 68% ⇒ 2nd term
Step-by-step explanation:
* Lets explain how to solve the problem
- Wait times at a doctor's office are typically 15 minutes, with a standard
deviation of 2 minutes
- We want to find the percentage of people should be seen by the
doctor between 13 and 17 minutes
* To find the percentage we will find z-score
∵ The rule the z-score is z = (x - μ)/σ , where
# x is the score
# μ is the mean
# σ is the standard deviation
∵ The mean is 15 minutes and standard deviation is 2 minutes
∴ μ = 15 , σ = 2
∵ The people should be seen by the doctor between 13 and
17 minutes
∵ x = 13 and 17
∴ z = 
∴ z = 
- Lets use the standard normal distribution table
∵ P(z > -1) = 0.15866
∵ P(z < 1) = 0.84134
∴ P(-1 < z < 1) = 0.84134 - 0.15866 = 0.68268 ≅ 0.68
∵ P(13 < x < 17) = P(-1 < z < 1)
∴ P(13 < x < 17) = 0.68 × 100% = 68%
* The percentage of people should be seen by the doctor between
13 and 17 minutes is 68%
Answer: 525=2/5 so 1/5=262.5 and multiply that by 3 is 787.5 2/5 plus 3/5 is 100% so you would make 787.5
Step-by-step explanation:
Answer:
In order to solve this algebraic expression, you need to get the variable x by itself
Step 1: subtract 4 from each side
4-4+7x=-24-4 (4-4=0, those cancel out) (-24-4=-28)
7x=-28
Step 2: divide both sides by 7
7x/7=-28/7 (7x/7=x) -28/7=-4)
Your final answer would be x=-4
Hope this helps ;)
Step-by-step explanation: