Proteins that are functionally less important for the survival of an organism generally evolve faster than more important proteins.
Proteins serve as the building blocks for all of life's essential processes. The proteins evolve along with the genes that create them, adding new functionality or features that may potentially result in the development of new species.
The mutation of amino acid-coding nucleotides and the stabilization of novel variations in the population are the two phases required for protein evolution.
The stability of a protein's folded structure, how well it prevents aggregation, and how well it is chaperoned all affect how quickly it evolves. According to the studies, the degree of a protein's expression has a greater influence on its evolutionary rate than does the protein's functional significance.
To learn more about protein and mutation here,
brainly.com/question/16238140
#SPJ4
Answer:
c. Glycolysis evolved in an oxygen-rich environment.
Explanation:
Glycolysis is the pathway that breaks down glucose into two molecules of pyruvate. It is a common pathway that is performed by both aerobic and anaerobic organisms. In aerobic organisms, glycolysis is followed by Kreb's cycle and electron transport chain. In anaerobic organisms, alcohol or lactic acid fermentation regenerate the NAD+ which is required to sustain glycolysis.
Therefore, glycolysis is independent of oxygen availability and can be performed under both aerobic and anaerobic conditions. This means that the pathway of glycolysis evolved under anaerobic conditions.
Answer:
Isotonic contractions maintain constant tension in the muscle as the muscle changes length. This can occur only when a muscle's maximal force of contraction exceeds the total load on the muscle. Isotonic muscle contractions can be either concentric (muscle shortens) or eccentric (muscle lengthens).
Answer:
A cell uses active transport to move molecules across a cellular membrane when the molecules are being moved against a concentration gradient.
Please mark me the brainliest
I’m not sure if this helps much, but try thinking of an Aloe Vera plant. When you cut into it, you expose the the sticky center. The part you cut has a “sticky end.” So, think of a knife as the restriction enzyme, and the plant as the DNA molecule that you’re cutting. Hope this helps.