Answer:
Step-by-step explanation:
Confidence interval for the difference in the two proportions is written as
Difference in sample proportions ± margin of error
Sample proportion, p= x/n
Where x = number of success
n = number of samples
For the men,
x = 318
n1 = 520
p1 = 318/520 = 0.61
For the women
x = 379
n2 = 460
p2 = 379/460 = 0.82
Margin of error = z√[p1(1 - p1)/n1 + p2(1 - p2)/n2]
To determine the z score, we subtract the confidence level from 100% to get α
α = 1 - 0.95 = 0.05
α/2 = 0.05/2 = 0.025
This is the area in each tail. Since we want the area in the middle, it becomes
1 - 0.025 = 0.975
The z score corresponding to the area on the z table is 1.96. Thus, confidence level of 95% is 1.96
Margin of error = 1.96 × √[0.61(1 - 0.61)/520 + 0.82(1 - 0.82)/460]
= 1.96 × √0.0004575 + 0.00032086957)
= 0.055
Confidence interval = 0.61 - 0.82 ± 0.055
= - 0.21 ± 0.055
The total amount of the resulting mixture can be calculated by adding up the volume of the given substances assuming that volume addition is applicable given the properties of the fluids used.
That is,
T = 6 quarts + 10 quarts = 16 quarts
The total volume of the resulting mixture is 16.
Then, we do the component (antifreeze) balance by adding up the resulting antifreeze from the substances to the total. We let x be the percentage of antifreeze in the final mixture.
6(0.52) + 10(0.32) = 16(x)
The value of x from the equation is 0.395.
Therefore, the answer to this item is 39.5%.
Answer: i think its zero
Step-by-step explanation:
or u can just look it up on an sigma math calculator and that should give u the answer
The system of equations has one solution