1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Gelneren [198K]
3 years ago
12

Please help me I need to answer this before tomorrow!

Mathematics
1 answer:
mr Goodwill [35]3 years ago
4 0

Answer:

Quadrant IV or D

Step-by-step explanation:

It is Quadrant IV or D, since it is a positive x (meaning it must be 1 or 4) and it has a negative y (so 3 or 4). You then find the common answer which is 4 or IV.

You might be interested in
Which triangle is a translation of the orange triangle?
ololo11 [35]

Answer:

5,6 meaning the answer is 4

Step-by-step explanation:

5 0
3 years ago
Under certain circumstances, a rumor spreads according to the equation p(t)=1/1+ae−kt where p(t) is the proportion of the popula
Julli [10]

Answer:

(a) \lim_{t \to \infty} \frac{1}{1+ae^{-kt}}=1

(b) \frac{d}{dt}\left(\frac{1}{1+ae^{-kt}}\right)=\frac{ake^{-kt}}{\left(1+ae^{-kt}\right)^2}

(c) 80% of the population will have heard the rumor in about 7.4 hrs.

Step-by-step explanation:

We know that a rumor spreads according to the equation

p(t)=\frac{1}{1+ae^{-kt}}

where p(t) is the proportion of the population that knows the rumor at time t, and a and k are positive constants.

(a) To find \lim_{t \to \infty} p(t) you must:

Use this fact,

\lim _{x\to a}\left[\frac{f\left(x\right)}{g\left(x\right)}\right]=\frac{\lim _{x\to a}f\left(x\right)}{\lim _{x\to a}g\left(x\right)},\:\quad \lim _{x\to a}g\left(x\right)\ne 0

\lim_{t \to \infty} \frac{1}{1+ae^{-kt}}\\\\\frac{\lim _{t\to \infty \:}\left(1\right)}{\lim _{t\to \infty \:}\left(1+ae^{-kt}\right)}

Apply this identity, to find \lim _{t\to \infty \:}\left(1)

\lim _{x\to a}c=c

\lim _{t\to \infty \:}\left(1\right)=1

\lim _{t\to \infty \:}\left(1+ae^{-kt}\right)=\lim _{t\to \infty \:}\left\left(1\right)+\lim _{t\to \infty \:}\left(ae^{-kt}\right)\\\\\lim _{t\to \infty \:}\left(1+ae^{-kt}\right)=1+a\cdot \lim _{t\to \infty \:}\left(e^{-kt}\right)\\\\\lim _{t\to \infty \:}\left(1+ae^{-kt}\right)=1+0

\frac{\lim _{t\to \infty \:}\left(1\right)}{\lim _{t\to \infty \:}\left(1+ae^{-kt}\right)}=\frac{1}{1+0} =1

(b) To find the rate of speed of the rumor you must find the derivative \frac{dp}{dt}

\frac{d}{dt}\left(\frac{1}{1+ae^{-kt}}\right)\\\\\frac{d}{dt}\left(\left(1+ae^{-kt}\right)^{-1}\right)\\\\\mathrm{Apply\:the\:chain\:rule}:\quad \frac{df\left(u\right)}{dx}=\frac{df}{du}\cdot \frac{du}{dx}\\\\\frac{d}{du}\left(u^{-1}\right)\frac{d}{dt}\left(1+ae^{-kt}\right)\\\\\left(-\frac{1}{u^2}\right)\left(-ake^{-kt}\right)\\\\\mathrm{Substitute\:back}\:u=\left(1+ae^{-kt}\right)\\\\\left(-\frac{1}{\left(1+ae^{-kt}\right)^2}\right)\left(-ake^{-kt}\right)

\frac{d}{dt}\left(\frac{1}{1+ae^{-kt}}\right)=\frac{ake^{-kt}}{\left(1+ae^{-kt}\right)^2}

(c) To find the time that will take for 80% of the population to hear the rumor, you must substitute a = 10, k = 0.5, and p(t) = 0.8 into p(t)=\frac{1}{1+ae^{-kt}} and solve for t

\frac{1}{1+10e^{-0.5t}}=0.8\\\\\frac{1}{1+10e^{-0.5t}}\left(1+10e^{-0.5t}\right)=0.8\left(1+10e^{-0.5t}\right)\\\\1=0.8\left(1+10e^{-0.5t}\right)\\\\0.8\left(1+10e^{-0.5t}\right)=1\\\\0.8\left(1+10e^{-0.5t}\right)\cdot \:10=1\cdot \:10\\\\8\left(1+10e^{-0.5t}\right)=10\\\\\frac{8\left(1+10e^{-0.5t}\right)}{8}=\frac{10}{8}\\\\1+10e^{-0.5t}=\frac{5}{4}\\\\1+10e^{-0.5t}-1=\frac{5}{4}-1\\\\10e^{-0.5t}=\frac{1}{4}\\\\\frac{10e^{-0.5t}}{10}=\frac{\frac{1}{4}}{10}

e^{-0.5t}=\frac{1}{40}\\\\\ln \left(e^{-0.5t}\right)=\ln \left(\frac{1}{40}\right)\\\\-0.5t\ln \left(e\right)=\ln \left(\frac{1}{40}\right)\\\\-0.5t=\ln \left(\frac{1}{40}\right)\\\\t=2\ln \left(40\right) \approx 7.377 \:hrs

4 0
3 years ago
you are playing catch with a friend and you are standing 90 feet from him. how many yards away are you standing?
ser-zykov [4K]

1 yard = 3 feet

90 divide by 3 is 30

30 yards

7 0
3 years ago
Read 2 more answers
|x-2| + |2x+1| ≥ 3<br> How to solve this inequality? HELP
Phoenix [80]

Answer: \begin{bmatrix}\mathrm{Solution:}\:&\:x\le \:-\frac{2}{3}\quad \mathrm{or}\quad \:x\ge \:0\:\\ \:\mathrm{Decimal:}&\:x\le \:-0.66666\dots \quad \mathrm{or}\quad \:x\ge \:0\\ \:\mathrm{Interval\:Notation:}&\:(-\infty \:,\:-\frac{2}{3}]\cup \:[0,\:\infty \:)\end{bmatrix}

Step-by-step explanation:

\left|x-2\right|+\left|2x+1\right|\ge \:3

x

x\le \:-\frac{2}{3}\quad \mathrm{or}\quad \:0\le \:x

x\le \:-\frac{2}{3}\quad \mathrm{or}\quad \:x\ge \:0

4 0
2 years ago
9.(6.879) is it positive or negative
NeX [460]
N I think because u can tell
3 0
3 years ago
Other questions:
  • An initial population of 7 chipmunks increases by 6% each year. If the function f(x) = abx models this situation, which function
    10·2 answers
  • Explain the different ways it it possible to add 2 rational numbers and get a negative number
    15·1 answer
  • You have already saved $55. You earned $9 per hour at your job. You are saving for a bicycle that costs $199. What inequality re
    5·1 answer
  • Tuition of $
    7·1 answer
  • 3 Students collected 600 cans for the canned food drive.
    12·1 answer
  • How can these two atoms have the same atomic mass?
    8·1 answer
  • Don't skip i need help as soon as possible and please hurry i will give 20 points + Brainliest
    14·2 answers
  • HEEELLLPPPP PLLLZZZ TT^TT
    11·2 answers
  • 30 Puntos a una buena respuesta, por favor me urge.
    12·2 answers
  • The sum of 5/6 and twice a number is equal to 2/3 subtracted from three times the number. Find the number
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!