Line passing through point (-2, -3) with a slope of -6 is (y - (-3)) = -6(x - (-2)) => y + 3 = -6(x + 2)
Answer: (a) x + 2y = -1 and 3x + y = 1
<u>Step-by-step explanation:</u>
I am not sure what the purpose was for the colored lines but I included them on the graph (below).
By using the concept of uniform rectilinear motion, the distance surplus of the average race car is equal to 3 / 4 miles. (Right choice: A)
<h3>How many more distance does the average race car travels than the average consumer car?</h3>
In accordance with the statement, both the average consumer car and the average race car travel at constant speed (v), in miles per hour. The distance traveled by the vehicle (s), in miles, is equal to the product of the speed and time (t), in hours. The distance surplus (s'), in miles, done by the average race car is determined by the following expression:
s' = (v' - v) · t
Where:
- v' - Speed of the average race car, in miles per hour.
- v - Speed of the average consumer car, in miles per hour.
- t - Time, in hours.
Please notice that a hour equal 3600 seconds. If we know that v' = 210 mi / h, v = 120 mi / h and t = 30 / 3600 h, then the distance surplus of the average race car is:
s' = (210 - 120) · (30 / 3600)
s' = 3 / 4 mi
The distance surplus of the average race car is equal to 3 / 4 miles.
To learn more on uniform rectilinear motion: brainly.com/question/10153269
#SPJ1
9514 1404 393
Answer:
a) ∆RLG ~ ∆NCP; SF: 3/2 (smaller to larger)
b) no; different angles
Step-by-step explanation:
a) The triangles will be similar if their angles are congruent. The scale factor will be the ratio of any side to its corresponding side.
The third angle in ∆RLG is 180° -79° -67° = 34°. So, the two angles 34° and 67° in ∆RLG match the corresponding angles in ∆NCP. The triangles are similar by the AA postulate.
Working clockwise around each figure, the sequence of angles from lower left is 34°, 79°, 67°. So, we can write the similarity statement by naming the vertices in the same order: ∆RLG ~ ∆NCP.
The scale factor relating the second triangle to the first is ...
NC/RL = 45/30 = 3/2
__
b) In order for the angles of one triangle to be congruent to the angles of the other triangle, at least one member of a list of two of the angles must match for the two triangles. Neither of the numbers 57°, 85° match either of the numbers 38°, 54°, so we know the two triangles have different angle measures. They cannot be similar.
-10x + 1.5 because you get rid of the parenthesis so -2 times 5 is -10 ( -10x ) and then -2 times -0.75 equals positive 1.5 due to two negatives canceling out to positive hope this helped!