Answer: 3.8
Step-by-step explanation:first, you need to figure out what side you’re looking for. Side AC is opposite of the angle you’re given. They also give you length of side AB which is 4. That is the hypotenuse (side directly across from right angle). So, you have the hypotenuse, and need the find the opposite side measure. Which option uses opposite and hypotenuse? That’s Sin. So, you would do: sin70 = ? / 4.
sin (of given angle)= opposite / hypotenuse.
Sin (70 degrees) = ? / 4
Then you solve for “?”
Type sin70 into your calculator, then multiply both sides by 4 to get “?” by itself. You should get 3.758770483, which rounds to 3.8
Answer:
Step-by-step explanation:
3×1405 and $.65
12x^3-11x^2+9x+18 divided by 4x+3
put he division into fraction
12x^3-11x^2+9x+18/4 x +3
reduced fraction by 2
12x^3-11x^2+9x+9/2 x +3
calculate sum
12x^3-11x^2+27/2 x +3
that is your answer ^
hope this helps :)
Answer:
39 liters
Step-by-step explanation:
6.5×6=39
so 39 litres
Answer:
![E[X^2]= \frac{2!}{2^1 1!}= 1](https://tex.z-dn.net/?f=E%5BX%5E2%5D%3D%20%5Cfrac%7B2%21%7D%7B2%5E1%201%21%7D%3D%201)

Step-by-step explanation:
For this case we can use the moment generating function for the normal model given by:
![\phi(t) = E[e^{tX}]](https://tex.z-dn.net/?f=%20%5Cphi%28t%29%20%3D%20E%5Be%5E%7BtX%7D%5D)
And this function is very useful when the distribution analyzed have exponentials and we can write the generating moment function can be write like this:

And we have that the moment generating function can be write like this:

And we can write this as an infinite series like this:

And since this series converges absolutely for all the possible values of tX as converges the series e^2, we can use this to write this expression:
![E[e^{tX}]= E[1+ tX +\frac{1}{2} (tX)^2 +....+\frac{1}{n!}(tX)^n +....]](https://tex.z-dn.net/?f=E%5Be%5E%7BtX%7D%5D%3D%20E%5B1%2B%20tX%20%2B%5Cfrac%7B1%7D%7B2%7D%20%28tX%29%5E2%20%2B....%2B%5Cfrac%7B1%7D%7Bn%21%7D%28tX%29%5En%20%2B....%5D)
![E[e^{tX}]= 1+ E[X]t +\frac{1}{2}E[X^2]t^2 +....+\frac{1}{n1}E[X^n] t^n+...](https://tex.z-dn.net/?f=E%5Be%5E%7BtX%7D%5D%3D%201%2B%20E%5BX%5Dt%20%2B%5Cfrac%7B1%7D%7B2%7DE%5BX%5E2%5Dt%5E2%20%2B....%2B%5Cfrac%7B1%7D%7Bn1%7DE%5BX%5En%5D%20t%5En%2B...)
and we can use the property that the convergent power series can be equal only if they are equal term by term and then we have:
![\frac{1}{(2k)!} E[X^{2k}] t^{2k}=\frac{1}{k!} (\frac{t^2}{2})^k =\frac{1}{2^k k!} t^{2k}](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B%282k%29%21%7D%20E%5BX%5E%7B2k%7D%5D%20t%5E%7B2k%7D%3D%5Cfrac%7B1%7D%7Bk%21%7D%20%28%5Cfrac%7Bt%5E2%7D%7B2%7D%29%5Ek%20%3D%5Cfrac%7B1%7D%7B2%5Ek%20k%21%7D%20t%5E%7B2k%7D)
And then we have this:
![E[X^{2k}]=\frac{(2k)!}{2^k k!}, k=0,1,2,...](https://tex.z-dn.net/?f=E%5BX%5E%7B2k%7D%5D%3D%5Cfrac%7B%282k%29%21%7D%7B2%5Ek%20k%21%7D%2C%20k%3D0%2C1%2C2%2C...)
And then we can find the ![E[X^2]](https://tex.z-dn.net/?f=E%5BX%5E2%5D)
![E[X^2]= \frac{2!}{2^1 1!}= 1](https://tex.z-dn.net/?f=E%5BX%5E2%5D%3D%20%5Cfrac%7B2%21%7D%7B2%5E1%201%21%7D%3D%201)
And we can find the variance like this :
![Var(X^2) = E[X^4]-[E(X^2)]^2](https://tex.z-dn.net/?f=Var%28X%5E2%29%20%3D%20E%5BX%5E4%5D-%5BE%28X%5E2%29%5D%5E2)
And first we find:
![E[X^4]= \frac{4!}{2^2 2!}= 3](https://tex.z-dn.net/?f=E%5BX%5E4%5D%3D%20%5Cfrac%7B4%21%7D%7B2%5E2%202%21%7D%3D%203)
And then the variance is given by:
