That looks great! But say you chose number 2. You could say you organized it by multiplying single packs by the pieces of packs.
        
                    
             
        
        
        
we know the segment QP is an angle bisector, namely it divides ∡SQR into two equal angles, thus ∡1 = ∡2, and ∡SQR = ∡1 + ∡2.
![\bf \begin{cases} \measuredangle SQR = \measuredangle 1 + \measuredangle 2\\\\ \measuredangle 2 = \measuredangle 1 = 5x-7 \end{cases}\qquad \qquad \stackrel{\measuredangle SQR}{7x+13} = (\stackrel{\measuredangle 1}{5x-7})+(\stackrel{\measuredangle 2}{5x-7}) \\\\\\ 7x+13 = 10x-14\implies 13=3x-14\implies 27=3x \\\\\\ \cfrac{27}{3}=x\implies 9=x \\\\[-0.35em] ~\dotfill\\\\ \measuredangle SQR = 7(9)+13\implies \measuredangle SQR = 76](https://tex.z-dn.net/?f=%5Cbf%20%5Cbegin%7Bcases%7D%20%5Cmeasuredangle%20SQR%20%3D%20%5Cmeasuredangle%201%20%2B%20%5Cmeasuredangle%202%5C%5C%5C%5C%20%5Cmeasuredangle%202%20%3D%20%5Cmeasuredangle%201%20%3D%205x-7%20%5Cend%7Bcases%7D%5Cqquad%20%5Cqquad%20%5Cstackrel%7B%5Cmeasuredangle%20SQR%7D%7B7x%2B13%7D%20%3D%20%28%5Cstackrel%7B%5Cmeasuredangle%201%7D%7B5x-7%7D%29%2B%28%5Cstackrel%7B%5Cmeasuredangle%202%7D%7B5x-7%7D%29%20%5C%5C%5C%5C%5C%5C%207x%2B13%20%3D%2010x-14%5Cimplies%2013%3D3x-14%5Cimplies%2027%3D3x%20%5C%5C%5C%5C%5C%5C%20%5Ccfrac%7B27%7D%7B3%7D%3Dx%5Cimplies%209%3Dx%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20%5Cmeasuredangle%20SQR%20%3D%207%289%29%2B13%5Cimplies%20%5Cmeasuredangle%20SQR%20%3D%2076)
 
        
             
        
        
        
She could use the following methods:
8 dimes
16 nickles
2 quarter and 3 dimes
2 quarters and 6 nickles
so, 4 combos