1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alex787 [66]
3 years ago
12

Can you help me please​

Mathematics
2 answers:
Nikitich [7]3 years ago
8 0
There is no question.
iogann1982 [59]3 years ago
4 0

Answer:

With what?

Step-by-step explanation:

Can I have a brainliest pls pls pls

You might be interested in
En una urna hay bolas numeradas del 0 al 99 (es decir: 0; 1; 2; 3... Hasta el 99). Juan y María realizan la experiencia de extra
dusya [7]

Answer:

Ambos tienen la misma probabilidad de lograr su objetivo y esa probabilidad es 0.81

Step-by-step explanation:

Se sabe que nuestra urna contiene bolas numeradas del 0 al 99. En total tenemos 100 bolas en nuestra urna.

Definimos los siguientes eventos :

J : '' El número extraído no incluye en su numeración la cifra 3 ''

M : '' El número extraído no incluye en su numeración la cifra 9 ''

Para saber quién tiene mayor probabilidad de lograr su objetivo debemos calcular la probabilidad de los eventos J y M.

Ahora bien, nuestro espacio muestral (Ω) está conformado por los siguientes elementos :

Ω = {0, 1 , 2 , ... , 99}

Donde cada uno de ellos tiene la misma probabilidad de ocurrencia. Estamos ante un espacio muestral equiprobable. Por ende, para calcular las respectivas probabilidades de los eventos J y M vamos a hacerlo mediante la siguiente fórmula :

P(J)=\frac{CasosFavorables}{CasosTotales}

Los casos totales son 100 (es el número de bolas numeradas en la urna).

Los casos favorables al evento J son 81 (son todos los números del 0 al 99 que no incluyen la cifra 3 en su numeración) ⇒

P(J)=\frac{81}{100}=0.81

La probabilidad del evento J es 0.81

De manera análoga, calculamos la probabilidad del evento M :

P(M)=\frac{CasosFavorables}{CasosTotales}=\frac{81}{100}=0.81

De igual manera, los casos totales siguen siendo 100.

Tenemos 81 números del 0 al 99 que no incluyen la cifra 9 en su numeración.

La probabilidad del evento M es 0.81

La probabilidad de ambos eventos es igual y vale 0.81

Finalmente, tanto Juan como María tienen la misma probabilidad de lograr su objetivo.

6 0
3 years ago
Which is a solution to the equation y equals 2x minus 5
hram777 [196]
For x, it would be 
y = 2x - 5
+5       +5

y + 5 = 2x
2    2    2

y/2 + 5/2 = x
         
6 0
3 years ago
Read 2 more answers
Ms. Storch is organizing a dance competition. She is charging a flat fee of 1 $18 for each group to enter the competition and an
nika2105 [10]
70.25-18 is 52.25. Then you just divide by the person charge; 2.75. There are 19 dancers.
4 0
3 years ago
Point A is at-4 and point B is at 6. Which describes one way to find the point that divides AB into a 3:2 ratio?
galben [10]

The point that divides AB into a 3:2 ratio is calculated by (d) for a ratio of 3:2, divide AB into 5 equal parts. Each equal part is 2 units, so the point that divides AB into a 3:2 ratio is 2

<h3>How to determine the ratio?</h3>

The given parameters are:

A = -4

B = 6

Start by calculating the length AB using:

AB = |B - A|

This gives

AB = |6 -(-4)|

Evaluate

AB = 10

Next, the length is divided into 5 parts.

So, the length of each part is:

Length = 10/5

Length = 2

The point on the location 3 : 2 is then calculated as:

Point = A + 3 * Length

This gives

Point = -4 + 3 * 2

Evaluate

Point = 2

The above computation is represented by option (d)

Read more about number lines at:

brainly.com/question/4727909

#SPJ1

7 0
2 years ago
Identifying the values a, b, and c is the first step in using the Quadratic Formula to find solution(s) to a quadratic equation.
lesya692 [45]

The values of a, b, and c in given quadratic equation are:

a = 6 and b = -9 and c = 7

<em><u>Solution:</u></em>

Given quadratic equation is:

-6x^2 = -9x + 7

Let us first convert the given quadratic equation to standard form

The standard form is ax^2+bx+c=0 with a, b, and c being constants, or numerical coefficients, and x is an unknown variable

-6x^2 = -9x + 7\\\\-6x^2+9x-7=0\\\\6x^2-9x+7=0

Now we have to find the values of a, b, c

\text {For a quadratic equation } a x^{2}+b x+c=0, \text { where } a \neq 0\\\\x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}

Thus comparing 6x^2-9x+7=0 with standard form of quadratic equation a x^{2}+b x+c=0

a = 6

b = -9

c = 7

Thus values of a, b, and c are found

3 0
4 years ago
Read 2 more answers
Other questions:
  • The point (2,7) is
    8·1 answer
  • the rain caused the river to rise a total of 6 2/3 inches the river was rising at an average of 2/3 of an inch each hour how man
    9·2 answers
  • What is the sum of 5/6 + 2/3
    9·1 answer
  • Raise 2 to the 4th power, then divide b by the result
    8·1 answer
  • The sum of three consecutive integers is 54. What are the integers?
    7·1 answer
  • The manager of an automobile dealership is considering a new bonus plan in order to increase sales. Currently, the mean sales ra
    9·1 answer
  • If you flip a coin ten times, how many different sequences of heads and tails are possible? a. 2 Superscript 9 Baseline = 512 b.
    7·1 answer
  • Help please
    15·1 answer
  • HELP ASAP WILL MARK BRAINLIEST!!!!
    15·2 answers
  • arc GT = 18 degrees, arc TA =32 degrees, arc NA =112 degrees, arc IN = 74 degrees. find measure of angle GET
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!