It is neither.
To be even, f(x) must equal f(-x).
If you substitute -x for x, you'd get
y = (-x)^2 - 2(-x) -8
y = x^2 +2x -8
This is not the same as the original, so this is not even.
To be odd, f(x) must equal -f(-x).
If you take the -x substitution from the last step and then multiply it by -1, you'd have:
y = -1 (x^2 +2x -8)
y = -x^2 -2x +8
This is not the same as the original either.
The function is neither even nor odd.
Answer:
0
Step-by-step explanation:
Answer:
The answer is 3/4
Step-by-step explanation:
When you divide two fractions, such as 1/2 ÷ 2/3, you have to flip the second fraction and then you simply multiply the numerators with each other and the denominator with each other.

- Given - <u>an </u><u>equation </u><u>in </u><u>it's</u><u> </u><u>general </u><u>form</u>
- To do - <u>convert </u><u>the </u><u>given</u><u> </u><u>equation</u><u> </u><u>into </u><u>a </u><u>form </u><u>that </u><u>is </u><u>easy </u><u>to </u><u>solve</u>
<u>Given </u><u>equation</u><u> </u><u>-</u>

<u>solve </u><u>the </u><u>parenthesis </u><u>so </u><u>as </u><u>to </u><u>obtain </u><u>simpler </u><u>terms</u>

<u>solve </u><u>the </u><u>like </u><u>terms </u><u>and </u><u>you'll</u><u> </u><u>obtain </u><u>the </u><u>required</u><u> </u><u>equation</u><u> </u><u>!</u>

hope helpful ~