Answer:
<em>(a) x=2, y=-1</em>
<em>(b) x=2, y=2</em>
<em>(c)</em> 
<em>(d) x=-2, y=-7</em>
Step-by-step explanation:
<u>Cramer's Rule</u>
It's a predetermined sequence of steps to solve a system of equations. It's a preferred technique to be implemented in automatic digital solutions because it's easy to structure and generalize.
It uses the concept of determinants, as explained below. Suppose we have a 2x2 system of equations like:

We call the determinant of the system

We also define:

And

The solution for x and y is


(a) The system to solve is

Calculating:





The solution is x=2, y=-1
(b) The system to solve is

Calculating:





The solution is x=2, y=2
(c) The system to solve is

Calculating:





The solution is

(d) The system to solve is

Calculating:





The solution is x=-2, y=-7
Answer:
17
Step-by-step explanation:
Do the exponent first, then subratct it to 81
Answer:
y = -
x + 2
Step-by-step explanation:
The equation of a line in slope- intercept form is
y = mx + c ( m is the slope and c the y- intercept )
y = 3x - 3 ← is in slope- intercept form
with slope m = 3
Given a line with slope m then the slope of a line perpendicular to it is
= -
= -
, hence
y = -
x + c ← is the partial equation of the perpendicular line
To find c substitute (3, 1) into the partial equation
1 = - 1 + c ⇒ c = 1 + 1 = 2
y = -
x + 2 ← equation of perpendicular line
Formula for the area of a circle is Pi*radius squared
So, we do Pi*2^2 which is 12.57