Given :-
- The general term of a sequence is given by aₙ=43-3(n-1) .
To Find :-
- The first four terms of the sequence.
Solution :-
The given expression is 
→ aₙ=43-3(n-1)
where n > 0
<u>Finding</u><u> the</u><u> </u><u>first </u><u>term </u><u>:</u>
Substituting n = 1 , we have ,
→ T1 = 43 - 3(1-1)
→ T1 = 43 - 3*0
→ T1 = 43 - 0 = 43
<u>Finding</u><u> the</u><u> </u><u>second</u><u> </u><u>term </u><u>:</u>
Substituting n = 2 , we have,
→ T2 = 43 -3(2-1)
→ T2 = 43 -3*1
→ T2 = 43 -3 = 40
<u>Finding</u><u> </u><u>the </u><u>third </u><u>term</u><u> </u><u>:</u>
Substituting n = 3 , we have,
→ T3 = 43 -3(3-1)
→ T3 = 43 -3*2
→ T3 = 43 -6 = 37
<u>Finding</u><u> the</u><u> </u><u>fourth</u><u> </u><u>term </u><u>:</u>
→ T4 = 43 -3(4-1)
→ T4 = 43 -3*3
→ T4 = 43-9 = 34
<u>Hence</u><u> the</u><u> </u><u>first</u><u> </u><u>four</u><u> terms</u><u> of</u><u> </u><u>the</u><u> </u><u>sequence</u><u> </u><u>are </u><u>4</u><u>3</u><u> </u><u>,</u><u> </u><u>4</u><u>0</u><u> </u><u>,</u><u> </u><u>37</u><u> </u><u>and </u><u>34</u><u> </u><u>.</u>
<em>I </em><em>hope</em><em> this</em><em> helps</em><em> </em><em>.</em><em> </em><em>Let </em><em>me</em><em> know</em><em> if</em><em> you</em><em> </em><em>need </em><em>further</em><em> </em><em>clarification</em><em> </em><em>.</em>
This is given by the multinomial coefficient:

If you're not familiar with the multinomial coefficient, you may be able to see it more clearly if you count the number of possible combinations taking each distinct letter

times, where

is the number of times it shows up in the original word.
Answer:
Sonya pays a flat fee of $30 for her phone bill and pays $2 per gigabyte she uses per month. Put Sonya's bill as an equation with <em>d</em> being how many gigabytes she uses per month.
Step-by-step explanation:
We get the flat fee of $30 from "30 + 2d" and the $2 per gigabyte from "30 + 2d" and since we want to find out Sonya's total bill, that's where the + in "30 + 2d" comes from. We want the variable to be <em>d</em> therefore <em>d</em> is how many gigabytes she uses per month.
I think $8. That’s the difference between the highest and lowest number.