Step-by-step explanation:
A,true
doesn't interfere with any function restriction
Perhaps the easiest way to find the midpoint between two given points is to average their coordinates: add them up and divide by 2.
A) The midpoint C' of AB is
.. (A +B)/2 = ((0, 0) +(m, n))/2 = ((0 +m)/2, (0 +n)/2) = (m/2, n/2) = C'
The midpoint B' is
.. (A +C)/2 = ((0, 0) +(p, 0))/2 = (p/2, 0) = B'
The midpoint A' is
.. (B +C)/2 = ((m, n) +(p, 0))/2 = ((m+p)/2, n/2) = A'
B) The slope of the line between (x1, y1) and (x2, y2) is given by
.. slope = (y2 -y1)/(x2 -x1)
Using the values for A and A', we have
.. slope = (n/2 -0)/((m+p)/2 -0) = n/(m+p)
C) We know the line goes through A = (0, 0), so we can write the point-slope form of the equation for AA' as
.. y -0 = (n/(m+p))*(x -0)
.. y = n*x/(m+p)
D) To show the point lies on the line, we can substitute its coordinates for x and y and see if we get something that looks true.
.. (x, y) = ((m+p)/3, n/3)
Putting these into our equation, we have
.. n/3 = n*((m+p)/3)/(m+p)
The expression on the right has factors of (m+p) that cancel*, so we end up with
.. n/3 = n/3 . . . . . . . true for any n
_____
* The only constraint is that (m+p) ≠ 0. Since m and p are both in the first quadrant, their sum must be non-zero and this constraint is satisfied.
The purpose of the exercise is to show that all three medians of a triangle intersect in a single point.
Answer:
(x, y) (1,5.5) , (2,5.75) (3,5.83) (4,5.875) (5,5.9)
Step-by-step explanation:
The x values lie on the horizontal line and the y values lie on the vertical line.
In order to find the value of y you must substitute the value of x in the equation given and you must plot you graph using the answers you got which I wrote for you.
NOTE:if there's anything you don't understand let me know.
Tammy's sample may not be considered valid because, on the first hand, it is said that she only asked students from her " Math Class".
If she wants to have a survey to find out the favorite subject of the students at her school, she must conduct a survey involving all the students in her school, not just in her class. What she did is just subjective. She should use a tally listing the different subjects and compare the number of students per subject. This way, she can have an objective representation of the least liked subjects and the most liked subjects of the students on her school.
Illustrating her survey through statistics may be more reliable and valid because it shows frequencies in which she can calculate easily and accurately the percentage of the number of students per subject, in a more objective manner.
Answer:
already put answer lol i just want points
Step-by-step explanation: