1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Natali5045456 [20]
3 years ago
12

You drop a ball from a height of 10 meters. Each time the ball bounces, it

Physics
1 answer:
Lera25 [3.4K]3 years ago
4 0
C ,because kinetic energy is stored and there is energy needed for the ball to keep bouncing
You might be interested in
I need it in the next hour or so!
PSYCHO15rus [73]

The car is accelerating at 3 m/s² in the positive direction (to the right). By Newton's second law, the net force on the car in this direction is

∑ F = F[a] - F[f] - F[air] = ma

3100 N - 200 N - F[air] = (650 kg) (3 m/s²)

Solve for F[air] :

F[air] = 3100 N - 200 N - (650 kg) (3 m/s²)

F[air] = 3100 N - 200 N - 1950 N

F[air] = 950 N

3 0
2 years ago
50200 J of heat are removed from
Dmitry_Shevchenko [17]

Correct Answer:

3.1375

Explanation:

Use equation Q=mcΔT to find m

Plug in all variables -50200=x\cdot 2000\cdot -8

Answer: 3.1375

4 0
4 years ago
An object is moving at 2.50 m/s [E]. At a time 3.00 seconds later the object is traveling at 1.50 m/s
babunello [35]

Given parameters:

First velocity  = 2.50m/s

Time of travel = 3s

Second velocity  = 1.50m/s

Unknown:

The displacement during the first interval = ?

Velocity is the displacement of a body with time. Displacement is a distance move in a specific direction by a body.

    Velocity  = \frac{Displacement}{Time taken}

So;

      Displacement  = Velocity x Time taken

Now input the parameter for the first velocity and time of travel;

      Displacement  = 2.5 x 3  = 7.5m

The displacement id 7.5m

7 0
3 years ago
I NEED HELP PLEASE, THANKS! :)
mrs_skeptik [129]

Answer:

1. Largest force: C;  smallest force: B; 2. ratio = 9:1

Explanation:

The formula for the force exerted between two charges is

F=K\dfrac{ q_{1}q_{2}}{r^{2}}

where K is the Coulomb constant.

q₁ and q₂ are also identical and constant, so Kq₁q₂ is also constant.

For simplicity, let's combine Kq₁q₂ into a single constant, k.

Then, we can write  

F=\dfrac{k}{r^{2}}

1. Net force on each particle

Let's

  • Call the distance between adjacent charges d.
  • Remember that like charges repel and unlike charges attract.

Define forces exerted to the right as positive and those to the left as negative.

(a) Force on A

\begin{array}{rcl}F_{A} & = & F_{B} + F_{C} + F_{D}\\& = & -\dfrac{k}{d^{2}}  - \dfrac{k}{(2d)^{2}}  +\dfrac{k}{(3d)^{2}}\\& = & \dfrac{k}{d^{2}}\left(-1 - \dfrac{1}{4} + \dfrac{1}{9} \right)\\\\& = & \dfrac{k}{d^{2}}\left(\dfrac{-36 - 9 + 4}{36} \right)\\\\& = & \mathbf{-\dfrac{41}{36} \dfrac{k}{d^{2}}}\\\\\end{array}

(b) Force on B

\begin{array}{rcl}F_{B} & = & F_{A} + F_{C} + F_{D}\\& = & \dfrac{k}{d^{2}}  - \dfrac{k}{d^{2}}  + \dfrac{k}{(2d)^{2}}\\& = & \dfrac{k}{d^{2}}\left(\dfrac{1}{4} \right)\\\\& = &\mathbf{\dfrac{1}{4} \dfrac{k}{d^{2}}}\\\\\end{array}

(C) Force on C

\begin{array}{rcl}F_{C} & = & F_{A} + F_{B} + F_{D}\\& = & \dfrac{k}{(2d)^{2}} + \dfrac{k}{d^{2}}  + \dfrac{k}{d^{2}}\\& = & \dfrac{k}{d^{2}}\left( \dfrac{1}{4} +1 + 1 \right)\\\\& = & \dfrac{k}{d^{2}}\left(\dfrac{1 + 4 + 4}{4} \right)\\\\& = & \mathbf{\dfrac{9}{4} \dfrac{k}{d^{2}}}\\\\\end{array}

(d) Force on D

\begin{array}{rcl}F_{D} & = & F_{A} + F_{B} + F_{C}\\& = & -\dfrac{k}{(3d)^{2}}  - \dfrac{k}{(2d)^{2}}  - \dfrac{k}{d^{2}}\\& = & \dfrac{k}{d^{2}}\left( -\dfrac{1}{9} - \dfrac{1}{4} -1 \right)\\\\& = & \dfrac{k}{d^{2}}\left(\dfrac{-4 - 9 -36}{36} \right)\\\\& = & \mathbf{-\dfrac{49}{36} \dfrac{k}{d^{2}}}\\\\\end{array}

(e) Relative net forces

In comparing net forces, we are interested in their magnitude, not their direction (sign), so we use their absolute values.

F_{A} : F_{B} : F_{C} : F_{D}  =  \dfrac{41}{36} : \dfrac{1}{4} : \dfrac{9}{4} : \dfrac{49}{36}\ = 41 : 9 : 81 : 49\\\\\text{C experiences the largest net force.}\\\text{B experiences the smallest net force.}\\

2. Ratio of largest force to smallest

\dfrac{ F_{C}}{ F_{B}} = \dfrac{81}{9} = \mathbf{9:1}\\\\\text{The ratio of the largest force to the smallest is $\large \boxed{\mathbf{9:1}}$}

7 0
3 years ago
According to evolutionary psychologists, our predisposition to overconsume fatty, high calorie foods illustrates that we are bio
sashaice [31]
The answer you're looking for is: reproductive success.


Hopefully this has helped! :)
3 0
3 years ago
Read 2 more answers
Other questions:
  • a bus travels 4 km due north and 3 km due west going from bus station a to bus station b. the magnitude of the bus displacement
    7·1 answer
  • This is junior year english
    15·2 answers
  • If a projectile was launched at an angle of 13 degrees above the ground and hit its target 14.3 m away, what was the projectile'
    11·1 answer
  • Which of the following statements concerning the lab is TRUE?
    7·1 answer
  • Plz help me on science about cells
    7·1 answer
  • Why does a gram of gold have the same density of a kilogram of gold
    15·1 answer
  • A valid hypothesis must have test for proving what?
    10·1 answer
  • A tube with sealed ends has some sand at one end. When the tube is turned upside down the sand falls 0.6m then settles down agai
    11·2 answers
  • A night lamp uses a 30 W bulb. If it is left on continuously for 8 hours, how much energy will it use?
    15·2 answers
  • PART A) The acceleration of gravity is 9.8 m/s^2 What is the magnitude of the net force on a(n) 82 kg driver operating a dragste
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!