Answer:
C11H25SO4
Explanation:
The total mass of the compound is 253.4 g, so, the mass of each element will be:
C: 52.14% of 253.4 = 0.5214x253.4 = 132.12 g
H: 9.946% of 253.4 = 0.09946x253.4 = 25.20 g
S: 12.66% of 253.4 = 0.1266x253.4 = 32.08 g
O: 25.26% of 253.4 = 0.2526x253.4 = 64.00 g
The molar mass are: C = 12 g/mol, H 1 g/mol, S = 32 g/mol, and O = 16 g/mol
So, to know how much moles will be, just divide the mass calculated above for the molar mass:
C: 132.12/12 = 11 moles
H: 25.20/ 1 = 25 moles
S: 32.08/32 = 1 mol
O: 64.00/16 = 4 moles
So the molecular formula is C11H25SO4
Answer:
3H₂SO₄ + 2Al₂(SO₄)₃ → Al₂(SO₄)₃ + 3H₂
Explanation:
3H₂SO₄ + 2Al₂(SO₄)₃ → Al₂(SO₄)₃ + 3H₂
In this type of reaction, one substance is replacing another:
A + BC → AC + B
In a single displacement reaction, atoms replace one another based on the activity series. Elements that are higher in the activity series. Also, if the element that is to replace the other in a compound is more reactive the reaction will occur. If it is less reactive, there will be no reation.
In the first equation, fluorine is more reactive than bromine. Therefore, bromine cannot replace bromine.
In the second equation, the displacement is between hydrogen and aluminium. Hydrogen is lower in the activity series, this implies that aluminum will replace it.
Answer: A dilation with rule: 
Explanation:
A dilation is a non-rigid transformation that creates an image that is the same shape as the original but has a different size.
It uses a scale factor k such that

(x,y)= coordinates of original figure
(kx,ky) = corresponding coordinate in the image.
To transform: A (3,-4) onto point A' (1.5,-2).
Using scale factor k=
, we have

Required rule: 
<h2>Answer:</h2>
Moles of a gas = 0.500
Volume = 2.50 L
Pressure = 13. atm
Temperature = ?
Solution:
Formula:
PV = n RT
Putting the values in formula:
T = PV/nR = 13 * 2.5 / 0.5 * 0.082057
= 32.5/0.041 = 792.68 K
T = 792.68 K