Answer:
I don't know the ans please search on the Google you will get
And don't forget to mark me as brainlest please guys and follow me back please please please please please
And I will help you tooooooooooooooooo and follow u back if you follow me
Here is what Golgi looks like, so that you can look at the picture and describe it.
______________________________________________________________
____________________________________________________________________________________________________________________________
Glad I could help, and good luck!
-----------------------------------------
------------------------------------------
------------------------------------------
The correct answer is C. An example of measurement bias in scientific
measurement, of the available answers, would be a balance that always
reads 0.1g. The other possible answers are all examples of devices or
measurement techniques that would help a scientist to avoid measurement
bias, rather than contributing to it.
is most abundant and 6310 times more than HF.
<h3>What is a strong and weak acid?</h3>
When an acid is dissolved in water, all of its molecules disintegrate, making the acid powerful.
When an acid is dissolved in water, only a small number of its molecules disintegrate, making the acid weak. Strong acids have a lower pH than weak acids.
The powerful acids include perchloric acid, chloric acid, nitric acid, sulfuric acid, hydrobromic acid, and hydroiodic acid.
Given:
Pka=3..2
pH=7
Let the volume be 1 liter
[HF]=01 M

Now,

F-:HF= 6309.57:1
Therefore, the most abundant is
and has 6310 times more than HF is
.
To know more about strong and weak acids, visit: brainly.com/question/12811944
#SPJ4
Answer:
Sodium laurate, also known as sodium dodecanoate, is a soap. It is the salt of lauric acid. It is an amphiphilic organic molecule which is composed of a hydrophilic head (polar ) and a hydrophobic tail (non-polar fatty acid).
In a aqueous solution, it leads to the formation of a micelle. The hydrophilic head of the molecule interacts with the surrounding polar solvent molecules. Thereby, making the micelle soluble in the solution. Whereas, the hydrophobic tails present in the core of micelle, interacts with the non-polar oil particles.