Answer:
Sr 2+(aq) + SO42-(aq) → SrSO4(s)
Explanation:
<u>Step 1</u>: Write a properly balanced equation with states:
K2SO4(aq) + Srl2(aq) → 2KI(aq) + SrSO4(s)
<u>Step 2</u>: write the full ionic equation with states. Remember to keep molecules intact. Only states (aq) will dissociate, (s) will not dissociate
. This means SrSO4 won't dissociate.
2K+(aq) + SO42-(aq) + Sr 2+(aq) + 2I-(aq) → 2K+(aq) + 2I-(aq) + SrSO4(s)
<u>Step 3</u>: Balanced net ionic equation
Sr 2+(aq) + SO42-(aq) → SrSO4(s)
Multiply .800 moles of O2 by Avagadro's number divided by 1 mole. This will get rid of the moles on the bottom and leave you with molecules. So technically .800 times 6.02x10^23.
Answer:
1 ) H2O 2) Hydrogen and oxygen 3) Compound
Explanation:
1) To write a chemical formula, you write the number of molecules of an element (2 hydrogen atoms + 1 Oxygen atom, or H2O). The letters represent the element's notation on the periodic table, while the number that follows it represents the number of atoms of that particular element within the compound. If there is no number that follows the letter, there is only one.
2) Letter "H" on the periodic table represents hydrogen, while "O" represents oxygen
3) You can tell that this is a compound because it is made of two or more elements found on the periodic table
Group 8 elements. They are unreactive and stable
Answer:

Explanation:
The pressure, the volume and the temperature of an ideal gas are related to each other by the equation of state:

where
p is the pressure of the gas
V is the volume of the gas
n is the number of moles
R is the gas constant
T is the absolute temperature
For the gas in this problem:
n = 2.00 mol is the number of moles
V = 17.4 L is the gas volume
p = 3.00 atm is the gas pressure
is the absolute temperature
Solving for R, we find the gas constant:
