Answer:

Step-by-step explanation:
Polynomial =
.
Before determining the degree of the polynomial, let's open the parentheses using the distributive property .

Degree is the highest exponential power in a polynomial .
So, the degree of the given polynomial is 5.

Answer:
a = 30
b = 15
c = 3
d = 30
e = 10
f = 20
Step-by-step explanation:
60 deg and a + 30 are alt int <S and congruent
a + 30 = 60
a = 30
a + 30 and a + 2b are corresponding angles and congruent
a + 2b = a + 30
2b = 30
b = 15
a + 2b and 5b - 5c are vertical angles and congruent
5b - 5c = a + 2b
5(15) - 5c = 30 + 2(15)
75 - 5c = 30 + 30
75 - 5c = 60
-5c = -15
c = 3
a + 2b and 10c + d are corresponding angles and congruent
10c + d = a + 2b
10(3) + d = 30 + 2(15)
d + 30 = 60
d = 30
5b - 5c and 2d + 6e are supplementary and add to 180
5b - 5c + 2d + 6e = 180
5(15) - 5(3) + 2(30) + 6e = 180
75 - 15 + 60 + 6e = 180
6e + 120 = 180
6e = 60
e = 10
2d + 6e and 4f + 4e are alt int angles and congruent.
4f + 4e = 2d + 6e
4f + 4(10) + 2(30) + 6(10)
4f + 40 = 60 + 60
4f + 40 = 120
4f = 80
f = 20
Answer:
The minimum score required for an A grade is 83.
Step-by-step explanation:
Normal Probability Distribution:
Problems of normal distributions can be solved using the z-score formula.
In a set with mean
and standard deviation
, the z-score of a measure X is given by:

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
Mean of 72.3 and a standard deviation of 8.
This means that 
Find the minimum score required for an A grade.
This is the 100 - 9 = 91th percentile, which is X when Z has a pvalue of 0.91, so X when Z = 1.34.




The minimum score required for an A grade is 83.
I say 12 because that would mean the first rectangle is 6x12 and the second is 10x12
Set up a proportion
EA / EB = ED/ EC
16 / (5x + 2 + 16) = 12 / (12 + 24)
16/(5x + 18) = 12 / 36 Cross multiply
16 * 36 = (4x + 18)*12 Remove the brackets
576 = 48x + 216 Subtract 216 from both sides.
360 = 48x Divide by 48
360/48 = x
7.5 = x