Answer:
is the value of the equilibrium constant for this reaction at 756 K.
Explanation:

Equilibrium concentration of 
![[COCl_2]=7.40\times 10^{-4} M](https://tex.z-dn.net/?f=%5BCOCl_2%5D%3D7.40%5Ctimes%2010%5E%7B-4%7D%20M)
Equilibrium concentration of 
![[CO]=3.76\times 10^{-2} M](https://tex.z-dn.net/?f=%5BCO%5D%3D3.76%5Ctimes%2010%5E%7B-2%7D%20M)
Equilibrium concentration of 
![[Cl_2]=1.78\times 10^{-4} M](https://tex.z-dn.net/?f=%5BCl_2%5D%3D1.78%5Ctimes%2010%5E%7B-4%7D%20M)
The expression of an equilibrium constant can be written as;
![K_c=\frac{[CO][Cl_2]}{[COCl_2]}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BCO%5D%5BCl_2%5D%7D%7B%5BCOCl_2%5D%7D)


is the value of the equilibrium constant for this reaction at 756 K.
Answer:
The wind energy and solar energy have their own benefits when producing electricity but one of their major drawbacks is that both these energy form depends on the environmental conditions and cannot be stored.
On the other hand, in hydroelectric pumped storage, water is stored in the form of gravitational potential energy. If not enough water is there to produce electricity, then this stored water can be run over turbines to produce electricity. Hence, this is one benefit of hydroelectric pumped storage over wind and solar energy.
Answer:
See explanation
Explanation:
If we look at the electron configuration closely, we will discover that the element must have had a ground state electron configuration of 2,4.
This is because, the innermost shell usually holds two electrons while the outer shells hold eight electrons each. The four electrons must be accommodated in the second shell in the ground state configuration of the compound.
However, when the atom is excited, one electron from this shell may move to the third shell to give the excited state configuration 2-3-1 as shown in the question.
D) Responds slowly
Good luck. It responds slower them the nervous system