The melting point for ice is at 32 degrees <span>Fahrenheit or O degrees Celsius.</span>
6.02*10^23 is Avagadro's number representing the number of molecules per mole of substance.
Answer Chemical reaction quantitatively depend on the reactant and product molecule
The concentration of AlCl3 solution if 150 ml of the solution contains 550 mg of cl- ion is 0.0344 M
calculation
concentration = moles /volume in liters
volume in liters = 150 /1000= 0.15 L
number of moles calculation
write the equation for dissociation of Al2Cl3
that is AlCl3 ⇔ Al^3+ + 3 Cl ^-
find the moles of Cl^- formed
moles =mass/molar mass
mass in grams= 550/ 1000 =0.55 grams
molar mass of Cl^- =35.5 g/mol
moles is therefore= 0.55/35.5 =0.0155 moles
by use of mole ration betweem AlCl3 to Cl^- which is 1:3 the moles of AlCl3 is =0.0155 x 1/3= 5.167 x10^-3 moles
concentration of AlCl3 is therefore= 5.167 x10^-3/ 0.15 =0.0344 M
Answer:
Mole fraction H₂O → 0.72
Mole fraction C₂H₅OH → 0.28
Explanation:
By the mass of the two elements in the solution, we determine the moles of each:
25 g . 1 mol/ 18g = 1.39 moles of water (solute)
25 g . 1 mol / 46 g = 0.543 moles of ethanol (solvent)
Mole fraction solute = Moles of solute / Total moles
Mole fraction solvent = Moles of solvent / Total moles
Total moles = Moles of solute + Moles of solvent
1.39 moles of solute + 0.543 moles of solvent = 1.933 moles → Total moles
Mole fraction H₂O = 1.39 / 1.933 → 0.72
Mole fraction C₂H₅OH= 0.543 / 1.933 → 0.28
Remember that sum of mole fractions = 1