Answer:
A chemical reaction in which an uncombined element replaces an element that is part of a compound is called a simple substitution reaction or simple displacement reaction.
Explanation:
A simple substitution reaction or simple displacement reaction, called single-displacement reaction, is a reaction in which an element of a compound is substituted by another element involved in the reaction. The starting materials are always pure elements and an aqueous compound. And a new pure aqueous compound and a different pure element are generated as products. The general form of a simple substitution reaction is:
AB + C → A +BC
where C and A are pure elements; C replaces A within compound AB to form a new co, placed CB and elementary A.
So, in a Single replacement reaction an uncombined element replaces an element.
<u><em>A chemical reaction in which an uncombined element replaces an element that is part of a compound is called a simple substitution reaction or simple displacement reaction.</em></u>
Answer:
1. 0.178 moles ; 2. 8x10²³ atoms ; 3. 7.22x10²³ molecules ; 4. 89.6 g ; 5. 1.34x10²² atoms ; 6. 1.67x10²⁵ molecules
Explanation:
1. Mass / Molar mass = Mol
5g / 28 g/m = 0.178 moles
2. 1 molecule of N₂ has 2 atoms, it is a dyatomic molecule.
4x10²³ x2 = 8x10²³ atoms
3. 1 mol of anything, has 6.02x10²³ particles
6.02x10²³ molecules . 1.2 mol = 7.22x10²³
4. 1 atom of C weighs 12 amu.
4.5x10²⁴ weigh ( 4.5x10²⁴ . 12) = 5.24x10²⁵ amu
1 amu = 1.66054x10⁻²⁴g
5.24x10²⁵ amu = (5.24x10²⁵ . 1.66054x10⁻²⁴) = 89.6 g
5. Molar mass NaCl = 58.45 g/m
1.3 g / 58.45 g/m = 0.0222 moles
1 mol has 6.02x10²³ atoms
0.0222 moles → ( 0.0222 . 6.02x10²³) = 1.34x10²²
6. Density of water is 1 g/mL, so 500 mL are contained in 500 g of water
Molar mass H₂O = 18 g/m
500 g / 18 g/m = 27.8 moles
6.02x10²³ molecules . 27.8 moles = 1.67x10²⁵
Answer:
308 moles of sodium
Explanation:
The balanced equation for the chemical reaction between sodium metal (Na) and water (H₂O) is the following:
2 Na(s) + 2 H₂O → 2 NaOH(aq) + H₂(g)
From the equation, we can see that 2 moles of Na react with 2 moles of H₂O to give 2 moles of NaOH and 1 mol of H₂ (hydrogen gas). So the stoichiometric mole ratio between Na and H₂ is: 2 mol Na/1 mol H₂. Thus, we multiply the mole ratio by the moles of H₂ to be produced to obtain the moles of Na required:
moles of Na required = 2 mol Na/1 mol H₂ x 154 moles H₂ = 308 moles Na
Therefore, 308 moles of sodium are needed to produce 154 moles of hydrogen gas.