The solutions to the given system of equations are x = 4 and y = -9
<h3>Simultaneous linear equations</h3>
From the question, we are to determine the solutions to the given system of equations
The given system of equations are
-8x-4y=4 --------- (1)
-5x-y=-11 --------- (2)
Multiply equation (2) by 4
4 ×[-5x-y=-11 ]
-20x -4y = -44 -------- (3)
Now, subtract equation (3) from equation (1)
-8x -4y = 4 --------- (1)
-(-20x -4y = -44) -------- (3)
12x = 48
x = 48/12
x = 4
Substitute the value of x into equation (2)
-5x -y = -11
-5(4) -y = -11
-20 -y = -11
-y = -11 + 20
-y = 9
∴ y = -9
Hence, the solutions to the given system of equations are x = 4 and y = -9
Learn more on Simultaneous linear equations here: brainly.com/question/26310043
#SPJ1
Answer:
L(x,y) = (2,-8,0) + (0,-1,1)*t
Step-by-step explanation:
for the planes
x + y + z = -6 and y + z = -8
the intersection can be found subtracting the equation of the planes
x + y + z - ( y + z ) = -6 - (-8)
x= 2
therefore
x=2
z=z
y= -8 - z
using z as parameter t and the point (2,-8,0) as reference point , then
x= 2
y= -8 - t
z= 0 + t
another way of writing it is
L(x,y) = (2,-8,0) + (0,-1,1)*t
Answer:
see below
Step-by-step explanation:
1. yes
2. no, 4.82 x 10^4
3, no, 9.9 x 10^-4
4. no, 3.6 x 10^6
5. yes
6. no, 7.8 x 10^-4