1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
MissTica
3 years ago
7

I don't want a account I just want answers

Mathematics
1 answer:
IgorLugansk [536]3 years ago
8 0
Answers for what ?:o
You might be interested in
What is the scale factor of two similar pyramids with volume of 13824 cubic feel and 216 cubic feet?
velikii [3]

Answer: The scale factor is 4

Step-by-step explanation:

We know that the pyramids are similar. The volume of one of these pyramids is  13,824 cubic feet and the volume of the other one is 216 cubic feet. Then:

V_1=13,824ft^3\\V_2=216ft^3

By Similar solids theorem, if two similar solids have a scale factor of \frac{a}{b}, then corresponding volumes have a ratio of \frac{a^3}{b^3}

Then:

\frac{V_1}{V_2}=\frac{a^3}{b^3}

Knowing this, we can find the scale factor. This is:

\frac{13,824}{216}=\frac{a^3}{b^3}\\\\\frac{13,824}{216}=(\frac{a}{b})^3\\\\\frac{a}{b}=\sqrt[3]{\frac{13,824}{216}}\\\\scale\ factor=\frac{a}{b}=4

3 0
3 years ago
If anyone knows about definite integrals for calculus then please I request help! I
kicyunya [14]

Answer:

\displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{1}{8} \bigg( e^\Big{\frac{4}{25}} - e^\Big{\frac{4}{81}} \bigg)

General Formulas and Concepts:

<u>Calculus</u>

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Multiplied Constant]:                                                           \displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Integration

  • Integrals

Integration Rule [Fundamental Theorem of Calculus 1]:                                     \displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)

Integration Property [Multiplied Constant]:                                                         \displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

U-Substitution

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx

<u>Step 2: Integrate Pt. 1</u>

<em>Identify variables for u-substitution.</em>

  1. Set <em>u</em>:                                                                                                             \displaystyle u = 4x^{-2}
  2. [<em>u</em>] Differentiate [Basic Power Rule, Derivative Properties]:                       \displaystyle du = \frac{-8}{x^3} \ dx
  3. [Bounds] Switch:                                                                                           \displaystyle \left \{ {{x = 9 ,\ u = 4(9)^{-2} = \frac{4}{81}} \atop {x = 5 ,\ u = 4(5)^{-2} = \frac{4}{25}}} \right.

<u>Step 3: Integrate Pt. 2</u>

  1. [Integral] Rewrite [Integration Property - Multiplied Constant]:                 \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{-1}{8}\int\limits^9_5 {\frac{-8}{x^3}e^\big{4x^{-2}}} \, dx
  2. [Integral] U-Substitution:                                                                              \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{-1}{8}\int\limits^{\frac{4}{81}}_{\frac{4}{25}} {e^\big{u}} \, du
  3. [Integral] Exponential Integration:                                                               \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{-1}{8}(e^\big{u}) \bigg| \limits^{\frac{4}{81}}_{\frac{4}{25}}
  4. Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]:           \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{-1}{8} \bigg( e^\Big{\frac{4}{81}} - e^\Big{\frac{4}{25}} \bigg)
  5. Simplify:                                                                                                         \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{1}{8} \bigg( e^\Big{\frac{4}{25}} - e^\Big{\frac{4}{81}} \bigg)

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

4 0
2 years ago
Solve for p.<br> 0.6p +4.5 = 22.5
mash [69]
0.6p + 4.5 = 22.5
Subtract 4.5 from both sides, which will give you, 18.5.
Then, divide 0.6 from both sides.
8 0
3 years ago
Read 2 more answers
-\frac{9x}{4}=27
IRISSAK [1]

\bf \cfrac{-9x}{4}=27\implies \stackrel{\textit{cross multiplying}}{-9x=4(27)}\implies x=\cfrac{4(27)}{-9}\implies x=4\cdot \cfrac{27}{-9} \\\\\\ x=4\cdot -3\implies x=-12

4 0
2 years ago
5x + qy, when x=8,y=11
Nataliya [291]

Answer:

40+11q

Step-by-step explanation:

5x+qy

5(8)+q(11)=40+11q

4 0
3 years ago
Other questions:
  • Max is reading a book. He has already read 1/4 of the book. If he stopped at the top of page 67, how many pages are there in the
    5·2 answers
  • Look at the diagram. Which of the following is another name for &lt; 1
    9·2 answers
  • Which of the following equations represents an account that will double after approximately 6 years? y = 1(1.50)^x y = 2(1.17)^x
    11·2 answers
  • A parallelogram-shaped field in a park needs sod. The parallelogram has a base of 30.5 meters and a height of 14 meters. The sod
    12·1 answer
  • 603 kg = ____ g what is the answer
    11·2 answers
  • In triangle ABC, AB measures 25 cm and AC measures 35 cm. The inequality &lt; s &lt; represents the possible third side length o
    7·2 answers
  • PLS HELPPPPPPP :((
    14·1 answer
  • A restaurant Chef is ordering supplies he order 6 lb of beef at $10.49 per pound 6 lb of potatoes at $10.50 a pound and then pou
    14·1 answer
  • Find the area of the rectangle. 7.4 in. , 4.5 in.
    15·1 answer
  • What is the equation of the line that passes through the point (- 1, - 5) and has a slope of -1
    6·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!