Traditionally, the term caviar refers only to roe from wild sturgeon in the Caspian Sea and Black Sea (Beluga, Ossetra and Sevruga caviars). Depending on the country, caviar may also be used to describe the roe of other fish such as salmon, steelhead, trout, lumpfish, whitefish, carp, and other species of sturgeon.
Answer:
The mRNA leaves the nucleus and travels to the ribosome where proteins are synthesized
Explanation:
During transcription, a messenger RNA (mRNA) molecule is synthesized from a specific DNA region which is referred to as a gene. Subsequently, the mRNA leaves the cell nucleus through the nuclear pores of the nuclear membrane and travels to the ribosome, where this sequence serves as template to synthesize a protein, in a process known as translation. Within the ribosomes, triplets of consecutive RNA nucleotides called codons bind to complementary RNA nucleotides (called anticodons) of the transfer ribonucleic acids (tRNAs). Each tRNA attaches a specific amino acid that corresponds to its anticodon sequence, which is then added to the nascent polypeptide chain.
Answer:
Chemical digestion actually starts in the mouth when our saliva mixes in with the food. So, A. wouldn't really be correct. It's not the molars that are doing the chewing, but rather your jaw muscels. I don't even know what pepsin is... <u>C. would probably be your best bet because it's your saliva that breaks down your food and helps you chew it.</u> And D. your tongue just helps to move the food around...
Explanation:
Hope this helps you!!!
Answer:
A mutation can alter the structure/function of a particular protein, thereby also altering the phenotype resulting from this new variant
Explanation:
A mutation can be defined as a genetic change in the genome of an organism. Some mutations are capable of modifying the expression and/or structure of the proteins, while other mutations (known as silent mutations) have no effect on the resulting proteins. When mutations occur within the gene region encoding a protein (i.e., exons), they are potentially capable of producing a faulty protein. For example, a mutation can alter the Open Reading Frame (ORF) of the resulting protein, thereby inactivating it. The mutations that alter the structure and/or function of the protein can also alter the resulting phenotype associated with the expression of this protein. For example, a mutation within a gene that encodes a key enzyme can potentially alter the binding site of the protein, so the resulting mutated enzyme cannot bind to the substrate anymore. In consequence, this mutation alters the phenotype of the individual who is not more able to carry out the metabolic reaction catalyzed by the faulty enzyme.