Answer:
the maximum intensity of an electromagnetic wave at the given frequency is 45 kW/m²
Explanation:
Given the data in the question;
To determine the maximum intensity of an electromagnetic wave, we use the formula;
=
ε₀cE
²
where ε₀ is permittivity of free space ( 8.85 × 10⁻¹² C²/N.m² )
c is the speed of light ( 3 × 10⁸ m/s )
E
is the maximum magnitude of the electric field
first we calculate the maximum magnitude of the electric field ( E
)
E
= 350/f kV/m
given that frequency of 60 Hz, we substitute
E
= 350/60 kV/m
E
= 5.83333 kV/m
E
= 5.83333 kV/m × (
)
E
= 5833.33 N/C
so we substitute all our values into the formula for intensity of an electromagnetic wave;
=
ε₀cE
²
=
× ( 8.85 × 10⁻¹² C²/N.m² ) × ( 3 × 10⁸ m/s ) × ( 5833.33 N/C )²
= 45 × 10³ W/m²
= 45 × 10³ W/m² × (
)
= 45 kW/m²
Therefore, the maximum intensity of an electromagnetic wave at the given frequency is 45 kW/m²
Answer:
the statements the correct one is A
Explanation:
Let's analyze this exercise, vehicles have the same mass and speed, so we can use the momentum impulse ratio
I = ∫ F dt = Δp
the Δp is the same for both cars since they have the same mass and the same speeds, so the momentum is the same in both vehicles
When they indicate that vehicle A was reduced more than vehicle B, this implies that the force acted for a longer time, to have the largest reduction in size, therefore the impact force was less in car A than in car B
Resisting the statements the correct one is A
Answer:

Explanation:
It is given that,


Taking the cross product of v and v such that,




|w| = 13.92
Let
is the unit vector normal to the plane containing u and v. So,


Hence, this is the required solution.
Answer:
The magnetic flux through surface is
Wb
Explanation:
Given :
Magnitude of magnetic field
T
Radius of circle
m
Angle between field and surface normal
25°
From the formula of flux,


Where
angle between magnetic field line and surface normal,
area of circular surface.



Magnetic flux is given by,

Wb
Therefore, the magnetic flux through surface is
Wb