Answer:
Required energy = 4758 J
Explanation:
Specific heat capacity of a material is the amount of energy required to raise the temperature of one kilogram (kg) of that material through one degree Celsius (°C).
Given data :
Specific heat capacity = c = 2440 J/kg.°C
Mass = m = 150 g = 0.15 kg
Initial temperature = 22°C
Final temperature = 35°C
Change in Temperature = ΔT = 13°C
Energy = E = ?
Using the following formula and substituting the values, we get:
E = m × c × ΔT
E = 0.15 × 2440 × 13
E = 4758 J
It would go to the positive charge im like 99% sure of that
Answer:
a) F = 680 N, b) W = 215 .4 J
, c) F = 1278.4 N
Explanation:
a) Hooke's law is
F = k x
To find the displacement (x) let's use the elastic energy equation
= ½ k x²
k = 2
/ x²
k = 2 85.0 / 0.250²
k = 2720 N / m
We replace and look for elastic force
F = 2720 0.250
F = 680 N
b) The definition of work is
W = ΔEm
W =
- 
W = ½ k (
² - x₀²)
The final distance
= 0.250 +0.220
= 0.4750 m
We calculate the work
W = ½ 2720 (0.47² - 0.25²)
W = 215 .4 J
We calculate the strength
F = k 
F = 2720 0.470
F = 1278.4 N