Answer:
(a) The total energy of the object at any point in its motion is 0.0416 J
(b) The amplitude of the motion is 0.0167 m
(c) The maximum speed attained by the object during its motion is 0.577 m/s
Explanation:
Given;
mass of the toy, m = 0.25 kg
force constant of the spring, k = 300 N/m
displacement of the toy, x = 0.012 m
speed of the toy, v = 0.4 m/s
(a) The total energy of the object at any point in its motion
E = ¹/₂mv² + ¹/₂kx²
E = ¹/₂ (0.25)(0.4)² + ¹/₂ (300)(0.012)²
E = 0.0416 J
(b) the amplitude of the motion
E = ¹/₂KA²
(c) the maximum speed attained by the object during its motion
Answer:
9V
Explanation:
The potential difference across the terminal as the same and thats because we are assuming that the source has no internal resistance.
Internal resistance are usually little resistances in the supply.
Answer:
I believe Mercury has the most extreme temperatures in the solar system, ranging from -280?F at night to 800 degrees F during the day for parts of the surface.
Hope that helps! :)
Answer:
mass- the amount of matter in an object
balance- tool used to measure mass
scale- a tool used to measure weight
weight- the downward pull on an object due to gravity
Answer:
The arrow is at a height of 500 feet at time t = 2.35 seconds.
Explanation:
It is given that,
An arrow is shot vertically upward at a rate of 250 ft/s, v₀ = 250 ft/s
The projectile formula is given by :
We need to find the time(s), in seconds, the arrow is at a height of 500 ft. So,
On solving the above quadratic equation, we get the value of t as, t = 2.35 seconds
So, the arrow is at a height of 500 feet at time t = 2.35 seconds. Hence, this is the required solution.