1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Anettt [7]
3 years ago
12

Roberto makes a graphic organizer to compare fusion nuclear reactions and fission nuclear reactions. A venn diagram with 2 inter

secting circles The circle on the left is labeled fusion. The circle on the right is labeled fission. There is a Z in the fission circle. There is an Y in the intersecting area. There is an X in the fusion circle. Which labels belong in the regions marked X, Y, and Z?
Physics
2 answers:
Schach [20]3 years ago
9 0

Answer:

The second one

Explanation:

The second one is joining so it is the one which belongs to X, first one belongs to Z

vekshin13 years ago
5 0

Answer:

D on edge

Explanation:

edge202020

You might be interested in
Look at the picture and help me plz
Elenna [48]

Answer:

AI

Explanation:

it stands for artificial intelligents

5 0
3 years ago
Read 2 more answers
A maser is a laser-type device that produces electromagnetic waves with frequencies in the microwave and radio-wave bands of the
rusak2 [61]

Answers:

a) T=7.04(10)^{-10} s

b) 5.11(10)^{12} cycles

c) 2.06(10)^{26} cycles

d) 46000 s

Explanation:

<h2>a) Time for one cycle of the radio wave</h2>

We know the maser radiowave has a frequency f of 1,420,405,751.786 cycles/s

In addition we know there is an inverse relation between frequency and time T:

f=\frac{1}{T} (1)

Isolating  T: T=\frac{1}{f} (2)

T=\frac{1}{1,420,405,751.786 cycles/s} (3)

T=7.04(10)^{-10} s (4) This is the time for 1 cycle

<h2>b) Cycles that occur in 1 h</h2>

If 1h=3600s and we already know the amount of cycles per second 1,420,405,751.786 cycles/s, then:

1,420,405,751.786 \frac{cycles}{s}(3600s)=5.11(10)^{12} cycles This is the number of cycles in an hour

<h2>c) How many cycles would have occurred during the age of the earth, which is estimated to be 4.6(10)^{9} years?</h2>

Firstly, we have to convert this from years to seconds:

4.6(10)^{9} years \frac{365 days}{1 year} \frac{24 h}{1 day} \frac{3600 s}{1 h}=1.45(10)^{17} s

Now we have to multiply this value for the frequency of the maser radiowave:

1,420,405,751.786 cycles/s (1.45(10)^{17} s)=2.06(10)^{26} cycles This is the number of cycles in the age of the Earth

<h2>d) By how many seconds would a hydrogen maser clock be off after a time interval equal to the age of the earth?</h2>

If we have 1 second out for every 100,000 years, then:

4.6(10)^{9} years \frac{1 s}{100,000 years}=46000 s

This means the maser would be 46000 s off after a time interval equal to the age of the earth

7 0
3 years ago
What are the products of linear electron flow during the light reactions of photosynthesis?
Katena32 [7]

Answer:

NADPH and ATP

Explanation:

In the clear stage the light that "hits" chlorophyll excites an electron to a higher energy level. In a series of reactions, energy is converted (throughout an electron transport process) into ATP and NADPH. Water breaks down in the process releasing oxygen as a secondary product of the reaction. ATP and NADPH are used to make the C-C bonds in the dark stage.

Photophosphorylation is the process of converting the energy of the electron excited by light into a pyrophosphate bond of an ADP molecule. This occurs when water electrons are excited by light in the presence of P680. The energy transfer is similar to the chemosmotic electron transport that occurs in the mitochondria.

Light energy causes the removal of an electron from a P680 molecule that is part of Photosystem II, the electron is transferred to an acceptor molecule (primary acceptor), and then passes downhill to Photosystem I through a conveyor chain of electrons The P680 requires an electron that is taken from the water by breaking it into H + ions and O-2 ions. These O-2 ions combine to form O2 that is released into the atmosphere.

The light acts on the P700 molecule of Photosystem I, causing an electron to be raised to a higher potential. This electron is accepted by a primary acceptor (different from the one associated with Photosystem II).

The electron goes through a series of redox reactions again, and finally combines with NADP + and H + to form NADPH, a carrier of H needed in the independent phase of light.

Electron of photosystem II replaces the excited electron of the P700 molecule.

There is therefore a continuous flow of electrons (non-cyclic) from water to NADPH, which is used for carbon fixation.

Cyclic electron flow occurs in some eukaryotes and in photosynthetic bacteria. NADPH does not occur, only ATP. This also occurs when the cell requires additional ATP, or when there is no NADP + to reduce it to NADPH.

In Photosystem II, the "pumping" of H ions into the thylakoids (from the stroma of the chloroplast) and the conversion of ADP + P to ATP is motorized by an electron gradient established in the thylakoid membrane.

7 0
3 years ago
When a certain element is excited with electricity, we see three main lines in its emission spectrum: two red lines and one oran
Eddi Din [679]
The absorption spectrum would have all the wavelengths of the light source but would have black lines where the two red and one orange lines were in the emission spectrum
4 0
4 years ago
What's the name of the compound Kl?
Nat2105 [25]

Answer: Potassium iodide

Explanation: their you go

3 0
2 years ago
Read 2 more answers
Other questions:
  • While driving north at 21 m/s during a rainstorm you notice that the rain makes an angle of 36° with the vertical. while drivin
    6·1 answer
  • What Kinetic Energy does the sack have just before it strikes the floor?
    11·1 answer
  • Which type of wave would actually slow down when moving from the air into the ocean?
    12·2 answers
  • A beam of yellow light is made to pass through two slits that are 3.0 x 10−3 meters apart. On a screen 2.0 meters away from the
    9·1 answer
  • 16. The sum of kinetic energies in an object.
    8·1 answer
  • Work is done when a person at rest holds a package vertically<br> a. true b. false
    5·1 answer
  • HELP DUE 3 MINUTESsssss
    7·2 answers
  • a 4,000 kilogram rocket has accelerates at a rate of 35 m/s2. How much force is required to do this?​
    11·1 answer
  • An engineer is working to design a bouncy ball that conserves all of its kinetic and potential energy. She drops the ball to the
    9·1 answer
  • Consider a blimp that can be approximated as a 3-m diameter, 8-m long ellipsoid and is connected to the ground. On a windless da
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!