<span>to preserve foods, dye fabric, and DE-ice roads i hopes this helps
</span>
Answer:
i dont speack spanish sorry
Explanation: agian sorry
Answer:
Hello your question is poorly written below is the complete question
Suppose the battery in a clock wears out after moving Ten thousand coulombs of charge through the clock at a rate of 0.5 Ma how long did the clock run on does battery and how many electrons per second slowed?
answer :
a) 231.48 days
b) n = 3.125 * 10^15
Explanation:
Battery moved 10,000 coulombs
current rate = 0.5 mA
<u>A) Determine how long the clock run on the battery. use the relation below</u>
q = i * t ----- ( 1 )
q = charge , i = current , t = time
10000 = 0.5 * 10^-3 * t
hence t = 2 * 10^7 secs
hence the time = 231.48 days
<u>B) Determine how many electrons per second flowed </u>
q = n*e ------ ( 2 )
n = number of electrons
e = 1.6 * 10^-19
q = 0.5 * 10^-3 coulomb ( charge flowing per electron )
back to equation 2
n ( number of electrons ) = q / e = ( 0.5 * 10^-3 ) / ( 1.6 * 10^-19 )
hence : n = 3.125 * 10^15
Answer:
I_syst = 278.41477 kg.m²
Explanation:
Mass of platform; m1 = 117 kg
Radius; r = 1.61 m
Moment of inertia here is;
I1 = m1•r²/2
I1 = 117 × 1.61²/2
I1 = 151.63785 kg.m²
Mass of person; m2 = 62.5 kg
Distance of person from centre; r = 1.05 m
Moment of inertia here is;
I2 = m2•r²
I2 = 62.5 × 1.05²
I2 = 68.90625 kg.m²
Mass of dog; m3 = 28.3 kg
Distance of Dog from centre; r = 1.43 m
I3 = 28.3 × 1.43²
I3 = 57.87067 kg.m²
Thus,moment of inertia of the system;
I_syst = I1 + I2 + I3
I_syst = 151.63785 + 68.90625 + 57.87067
I_syst = 278.41477 kg.m²
Answer:
0
Explanation:
F1 = G•2.2•4.66/3² (pointed right)
F2 = G•2.2•4.66/3² (pointed left)
subtract the two to get zero