Answer:
a. 8p
Explanation:
We are given that
Radius of hollow sphere , R1=R
Density of hollow sphere=
After compress
Radius of hollow sphere, R2=R/2
We have to find density of the compressed sphere.
We know that


Therefore,
Volume of sphere=
Using the formula



Hence, the density of the compressed sphere=
Option a is correct.
The kinetic theory of gases is a simple, historically significant model of the thermodynamic behavior of gases, with which many principal concepts of thermodynamics were established. The model describes a gas as a large number of identical submicroscopic particles, all of which are in constant, rapid, random motion
A. 0.5kg
To get this answer you need to follow the equation of KE=0.5*mv^2
But we don't have the m part in the equation. So just plug in the numbers to see which works best, though I can tell you before we do that the answer would be a.
As you may know, gravity, is a force of 9.8 m/s. And we want to get 9.8 Joules. So if we take a half a kg stone, release it at one meter, we get half of the normal gravity pull, 4.90 Joules. That means if we take half a kg stone and drop it at a doubled height, we get 9.8 Joules.
That is also to say that if we have a 1kg stone and drop it at one meter you will get the normal pull of gravity in Joules, 9.8J.
Be careful though, this does not mean if you drop a 1kg stone and a .5 kg stone the 1kg will hit first. This simply means that the 1kg stone will have twice the Joules that the .5kg stone has.