Answer:
The impulse applied by the stick to the hockey park is approximately 7 kilogram-meters per second.
Explanation:
The Impulse Theorem states that the impulse experimented by the hockey park is equal to the vectorial change in its linear momentum, that is:
(1)
Where:
- Impulse, in kilogram-meters per second.
- Mass, in kilograms.
- Initial velocity of the hockey park, in meters per second.
- Final velocity of the hockey park, in meters per second.
If we know that
,
and
, then the impulse applied by the stick to the park is approximately:
![I = (0.2\,kg)\cdot \left(35\,\hat{i}\right)\,\left[\frac{m}{s} \right]](https://tex.z-dn.net/?f=I%20%3D%20%280.2%5C%2Ckg%29%5Ccdot%20%5Cleft%2835%5C%2C%5Chat%7Bi%7D%5Cright%29%5C%2C%5Cleft%5B%5Cfrac%7Bm%7D%7Bs%7D%20%5Cright%5D)
![I = 7\,\hat{i}\,\left[\frac{kg\cdot m}{s} \right]](https://tex.z-dn.net/?f=I%20%3D%207%5C%2C%5Chat%7Bi%7D%5C%2C%5Cleft%5B%5Cfrac%7Bkg%5Ccdot%20m%7D%7Bs%7D%20%5Cright%5D)
The impulse applied by the stick to the hockey park is approximately 7 kilogram-meters per second.
All stars in a stellar cluster have roughly the same distance.
<h3>What coloration are celebrity clusters?</h3>
Open clusters have a tendency to be blue in color. They frequently include glowing gas and dust. The stars in an open cluster are young stars that all formed from the equal nebula. These warm blue stars are in an open cluster known as the Jewel Bo
<h3>Are stars in the identical cluster?</h3>
Though stellar associations are grouped in with megastar clusters, they're pretty a bit different. "Stellar associations are companies of tens to hundreds of stars that have similar a while and metallicities, and are moving in roughly the equal direction within the galaxy, but are no longer gravitationally bound," Geller said.
Learn more about star cluster here:
<h3>
brainly.com/question/20326847</h3><h3 /><h3>#SPJ4</h3>
Answer:
Ur answer is Stationary Front
Explanation:
Stationary Front is when a cold air mass and a warm air mass but are at a standstill the boundary is called Stationary Front.
Explanation:
Since I can only do this by observation, the elevation of F is approximately 850km and the elevation of B is 925km.