1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Elina [12.6K]
2 years ago
12

If a1= 1 and an = -5an-1 then find the value of a6.

Mathematics
1 answer:
anyanavicka [17]2 years ago
4 0
The answer is 6 (:::::)
You might be interested in
Test for convergence
Elan Coil [88]
You've established that

\displaystyle\sum_{n\ge1}\frac1{2^n}\le\int_1^\infty\frac{\mathrm dx}{2^x}

so all you need to do is compute the integral. Rewrite the integrand as

\dfrac1{2^x}=2^{-x}=e^{\ln2^{-x}}=e^{-x\ln2}

and replace y=-x\ln2, so that \mathrm dy=-\ln2\,\mathrm dx. Then

\displaystyle\int_{x=1}^{x\to\infty}\frac{\mathrm dx}{2^x}=\int_{y=-\ln2}^{y\to-\infty}e^y\,\frac{\mathrm dy}{-\ln 2}=\frac1{\ln2}\int_{-\infty}^{-\ln2}e^y\,\mathrm dy

By the fundamental theorem of calculus, this evaluates to

\dfrac1{\ln2}e^y\bigg|_{y\to-\infty}^{y=-\ln2}=\dfrac1{\ln2}\left(e^{-\ln2}-\lim_{y\to-\infty}e^y\right)=\dfrac{e^{-\ln2}}{\ln2}=\dfrac{\frac12}{\ln2}=-\dfrac1{2\ln2}=\dfrac1{\ln4}

and so the series converges.

You also could have used the fact that the series is geometric with common ratio less than 1 to arrive at the same conclusion, with the added perk of being able to find the exact value of the sum to corroborate this.
4 0
3 years ago
175 mm= how much m <br> HELP ME CAUSE IDK
Law Incorporation [45]
K
H
DBDCM

Therefore it would be 175 x .001


.175


3 0
3 years ago
There are 144 leaves on a tree outside of school. Each week the tree loses 8 leaves. How many leaves will be remaining on the tr
olga_2 [115]

Answer:

96

Step-by-step explanation:

Day 1: 144-8= 136

Day 2: 136-8= 128

Day 3: 128-8= 120

Day 4: 120-8= 112

Day 5: 112-8= 104

Day 6: 104-8=96

4 0
3 years ago
A uniform beam of length L = 7.30m and weight = 4.45x10²N is carried by two ovorkers , Sam and Joe - Determine the force exert e
Mama L [17]

Answer:

Effort and distance = Load  x distance

7.30 x 4.45x10^2N = 3.2485 X 10^3N

We then know we can move 3 points to the right and show in regular notion.

= 3248.5

Divide by 2 = 3248.5/2 = 1624.25 force

Step-by-step explanation:

In the case of a Second Class Lever as attached diagram shows proof to formula below.

Load x distance d1 = Effort x distance (d1 + d2)

The the load in the wheelbarrow shown is trying to push the wheelbarrow down in an anti-clockwise direction whilst the effort is being used to keep it up by pulling in a clockwise direction.

If the wheelbarrow is held steady (i.e. in Equilibrium) then the moment of the effort must be equal to the moment of the load :

Effort x its distance from wheel centre = Load x its distance from the wheel centre.

This general rule is expressed as clockwise moments = anti-clockwise moments (or CM = ACM)

 

This gives a way of calculating how much force a bridge support (or Reaction) has to provide if the bridge is to stay up - very useful since bridges are usually too big to just try it and see!

The moment of the load on the beam (F) must be balanced by the moment of the Reaction at the support (R2) :

Therefore F x d = R2 x D

It can be seen that this is so if we imagine taking away the Reaction R2.

The missing support must be supplying an anti-clockwise moment of a force for the beam to stay up.

The idea of clockwise moments being balanced by anti-clockwise moments is easily illustrated using a see-saw as an example attached.

We know from our experience that a lighter person will have to sit closer to the end of the see-saw to balance a heavier person - or two people.

So if CM = ACM then F x d = R2 x D

from our kitchen scales example above 2kg x 0.5m = R2 x 1m

so R2 = 1m divided by 2kg x 0.5m

therefore R2 = 1kg - which is what the scales told us (note the units 'm' cancel out to leave 'kg')

 

But we can't put a real bridge on kitchen scales and sometimes the loading is a bit more complicated.

Being able to calculate the forces acting on a beam by using moments helps us work out reactions at supports when beams (or bridges) have several loads acting upon them.

In this example imagine a beam 12m long with a 60kg load 6m from one end and a 40kg load 9m away from the same end n- i.e. F1=60kg, F2=40kg, d1=6m and d2=9m

 

CM = ACM

(F1 x d1) + (F2 x d2) = R2 x Length of beam

(60kg x 6m) + (40Kg x 9m) = R2 x 12m

(60kg x 6m) + (40Kg x 9m) / 12m = R2

360kgm + 360km / 12m = R2

720kgm / 12m = R2

60kg = R2 (note the unit 'm' for metres is cancelled out)

So if R2 = 60kg and the total load is 100kg (60kg + 40kg) then R1 = 40kg

4 0
2 years ago
2y+7z-2z+4y+8+y+2 Combine Like Terms
Andrew [12]

Answer:

7y+5z+10

Step-by-step explanation:

7y+5z+10

8 0
2 years ago
Read 2 more answers
Other questions:
  • A wild tiger can eat up to 55 pounds of meat a day. About how many days would it take a tiger to eat the following prey?
    6·1 answer
  • State the degrees of freedom and explain how you calculated it by hand.
    11·1 answer
  • Solve. <br><br> 3x = 15<br> A) x = 4 <br> B) x = 5 <br> C) x = 6 <br> D) x = 12
    11·2 answers
  • Write the standard equation of a circle with center (-9,-4) and radius 15.
    13·1 answer
  • Fun Tees is offering a 30% discount on all merchandise. Find the discounted price of a T-shirt originally priced at $16. Solve i
    12·1 answer
  • The value of a car decreases by 5% each year.
    13·1 answer
  • According to the graph, what is the value of the constant in the equation below?
    15·1 answer
  • PLS HELP WILL MARK BRAINLIEST!
    10·2 answers
  • Is not a polygon because ???
    8·2 answers
  • Is TAG BAG? IF so, identif th similarity postulate or theorem that applies
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!