Answer:
5/2
Step-by-step explanation:
Possible rational roots are ...
±(divisor of 9)/(divisor of 2)
So, the possibilities are ...
±1/2, ±1, ±3/2, ±3, ±9/2, ±9
The one on your list that is not among these is 5/2.
5/2 is not a possible rational root.
Answer:
t=9
Step-by-step explanation:
subtract 9 from both sides
t/3=3
t=9
Undefined terms is the category its belongs to.
The number is 66.
Solution:
Let the number be x.
To find the number x using given conditions.
Start with the last condition.
It is less than 7 times 8 + 23 = 7 × 8 + 23 = 79
So, the number is less than 79 which implies x < 79.
Using condition (4),
It is greater than 5 times 4 = 5 × 4 = 20
So, the number is greater than 79 which implies x > 20.
Combining condition (4) and (7), we get 20 < x < 79.
Using condition (3) and (5),
The number is a multiple of 11 and 6.
The number which is multiplied by both 11 and 6 is 66, 132, ...
But here x lies between 20 < x < 79.
So x = 66.
66 is not odd number and the sum of the digits is divisible by 2.
Therefore condition (1) and (2) also satisfied.
Hence the number is 66.
I'm assuming
is the shape parameter and
is the scale parameter. Then the PDF is
![f_X(x)=\begin{cases}\dfrac29xe^{-x^2/9}&\text{for }x\ge0\\\\0&\text{otherwise}\end{cases}](https://tex.z-dn.net/?f=f_X%28x%29%3D%5Cbegin%7Bcases%7D%5Cdfrac29xe%5E%7B-x%5E2%2F9%7D%26%5Ctext%7Bfor%20%7Dx%5Cge0%5C%5C%5C%5C0%26%5Ctext%7Botherwise%7D%5Cend%7Bcases%7D)
a. The expectation is
![E[X]=\displaystyle\int_{-\infty}^\infty xf_X(x)\,\mathrm dx=\frac29\int_0^\infty x^2e^{-x^2/9}\,\mathrm dx](https://tex.z-dn.net/?f=E%5BX%5D%3D%5Cdisplaystyle%5Cint_%7B-%5Cinfty%7D%5E%5Cinfty%20xf_X%28x%29%5C%2C%5Cmathrm%20dx%3D%5Cfrac29%5Cint_0%5E%5Cinfty%20x%5E2e%5E%7B-x%5E2%2F9%7D%5C%2C%5Cmathrm%20dx)
To compute this integral, recall the definition of the Gamma function,
![\Gamma(x)=\displaystyle\int_0^\infty t^{x-1}e^{-t}\,\mathrm dt](https://tex.z-dn.net/?f=%5CGamma%28x%29%3D%5Cdisplaystyle%5Cint_0%5E%5Cinfty%20t%5E%7Bx-1%7De%5E%7B-t%7D%5C%2C%5Cmathrm%20dt)
For this particular integral, first integrate by parts, taking
![u=x\implies\mathrm du=\mathrm dx](https://tex.z-dn.net/?f=u%3Dx%5Cimplies%5Cmathrm%20du%3D%5Cmathrm%20dx)
![\mathrm dv=xe^{-x^2/9}\,\mathrm dx\implies v=-\dfrac92e^{-x^2/9}](https://tex.z-dn.net/?f=%5Cmathrm%20dv%3Dxe%5E%7B-x%5E2%2F9%7D%5C%2C%5Cmathrm%20dx%5Cimplies%20v%3D-%5Cdfrac92e%5E%7B-x%5E2%2F9%7D)
![E[X]=\displaystyle-xe^{-x^2/9}\bigg|_0^\infty+\int_0^\infty e^{-x^2/9}\,\mathrm x](https://tex.z-dn.net/?f=E%5BX%5D%3D%5Cdisplaystyle-xe%5E%7B-x%5E2%2F9%7D%5Cbigg%7C_0%5E%5Cinfty%2B%5Cint_0%5E%5Cinfty%20e%5E%7B-x%5E2%2F9%7D%5C%2C%5Cmathrm%20x)
![E[X]=\displaystyle\int_0^\infty e^{-x^2/9}\,\mathrm dx](https://tex.z-dn.net/?f=E%5BX%5D%3D%5Cdisplaystyle%5Cint_0%5E%5Cinfty%20e%5E%7B-x%5E2%2F9%7D%5C%2C%5Cmathrm%20dx)
Substitute
, so that
:
![E[X]=\displaystyle\frac32\int_0^\infty y^{-1/2}e^{-y}\,\mathrm dy](https://tex.z-dn.net/?f=E%5BX%5D%3D%5Cdisplaystyle%5Cfrac32%5Cint_0%5E%5Cinfty%20y%5E%7B-1%2F2%7De%5E%7B-y%7D%5C%2C%5Cmathrm%20dy)
![\boxed{E[X]=\dfrac32\Gamma\left(\dfrac12\right)=\dfrac{3\sqrt\pi}2\approx2.659}](https://tex.z-dn.net/?f=%5Cboxed%7BE%5BX%5D%3D%5Cdfrac32%5CGamma%5Cleft%28%5Cdfrac12%5Cright%29%3D%5Cdfrac%7B3%5Csqrt%5Cpi%7D2%5Capprox2.659%7D)
The variance is
![\mathrm{Var}[X]=E[(X-E[X])^2]=E[X^2-2XE[X]+E[X]^2]=E[X^2]-E[X]^2](https://tex.z-dn.net/?f=%5Cmathrm%7BVar%7D%5BX%5D%3DE%5B%28X-E%5BX%5D%29%5E2%5D%3DE%5BX%5E2-2XE%5BX%5D%2BE%5BX%5D%5E2%5D%3DE%5BX%5E2%5D-E%5BX%5D%5E2)
The second moment is
![E[X^2]=\displaystyle\int_{-\infty}^\infty x^2f_X(x)\,\mathrm dx=\frac29\int_0^\infty x^3e^{-x^2/9}\,\mathrm dx](https://tex.z-dn.net/?f=E%5BX%5E2%5D%3D%5Cdisplaystyle%5Cint_%7B-%5Cinfty%7D%5E%5Cinfty%20x%5E2f_X%28x%29%5C%2C%5Cmathrm%20dx%3D%5Cfrac29%5Cint_0%5E%5Cinfty%20x%5E3e%5E%7B-x%5E2%2F9%7D%5C%2C%5Cmathrm%20dx)
Integrate by parts, taking
![u=x^2\implies\mathrm du=2x\,\mathrm dx](https://tex.z-dn.net/?f=u%3Dx%5E2%5Cimplies%5Cmathrm%20du%3D2x%5C%2C%5Cmathrm%20dx)
![\mathrm dv=xe^{-x^2/9}\,\mathrm dx\implies v=-\dfrac92e^{-x^2/9}](https://tex.z-dn.net/?f=%5Cmathrm%20dv%3Dxe%5E%7B-x%5E2%2F9%7D%5C%2C%5Cmathrm%20dx%5Cimplies%20v%3D-%5Cdfrac92e%5E%7B-x%5E2%2F9%7D)
![E[X^2]=\displaystyle-x^2e^{-x^2/9}\bigg|_0^\infty+2\int_0^\infty xe^{-x^2/9}\,\mathrm dx](https://tex.z-dn.net/?f=E%5BX%5E2%5D%3D%5Cdisplaystyle-x%5E2e%5E%7B-x%5E2%2F9%7D%5Cbigg%7C_0%5E%5Cinfty%2B2%5Cint_0%5E%5Cinfty%20xe%5E%7B-x%5E2%2F9%7D%5C%2C%5Cmathrm%20dx)
![E[X^2]=\displaystyle2\int_0^\infty xe^{-x^2/9}\,\mathrm dx](https://tex.z-dn.net/?f=E%5BX%5E2%5D%3D%5Cdisplaystyle2%5Cint_0%5E%5Cinfty%20xe%5E%7B-x%5E2%2F9%7D%5C%2C%5Cmathrm%20dx)
Substitute
again to get
![E[X^2]=\displaystyle9\int_0^\infty e^{-y}\,\mathrm dy=9](https://tex.z-dn.net/?f=E%5BX%5E2%5D%3D%5Cdisplaystyle9%5Cint_0%5E%5Cinfty%20e%5E%7B-y%7D%5C%2C%5Cmathrm%20dy%3D9)
Then the variance is
![\mathrm{Var}[X]=9-E[X]^2](https://tex.z-dn.net/?f=%5Cmathrm%7BVar%7D%5BX%5D%3D9-E%5BX%5D%5E2)
![\boxed{\mathrm{Var}[X]=9-\dfrac94\pi\approx1.931}](https://tex.z-dn.net/?f=%5Cboxed%7B%5Cmathrm%7BVar%7D%5BX%5D%3D9-%5Cdfrac94%5Cpi%5Capprox1.931%7D)
b. The probability that
is
![P(X\le 3)=\displaystyle\int_{-\infty}^3f_X(x)\,\mathrm dx=\frac29\int_0^3xe^{-x^2/9}\,\mathrm dx](https://tex.z-dn.net/?f=P%28X%5Cle%203%29%3D%5Cdisplaystyle%5Cint_%7B-%5Cinfty%7D%5E3f_X%28x%29%5C%2C%5Cmathrm%20dx%3D%5Cfrac29%5Cint_0%5E3xe%5E%7B-x%5E2%2F9%7D%5C%2C%5Cmathrm%20dx)
which can be handled with the same substitution used in part (a). We get
![\boxed{P(X\le 3)=\dfrac{e-1}e\approx0.632}](https://tex.z-dn.net/?f=%5Cboxed%7BP%28X%5Cle%203%29%3D%5Cdfrac%7Be-1%7De%5Capprox0.632%7D)
c. Same procedure as in (b). We have
![P(1\le X\le3)=P(X\le3)-P(X\le1)](https://tex.z-dn.net/?f=P%281%5Cle%20X%5Cle3%29%3DP%28X%5Cle3%29-P%28X%5Cle1%29)
and
![P(X\le1)=\displaystyle\int_{-\infty}^1f_X(x)\,\mathrm dx=\frac29\int_0^1xe^{-x^2/9}\,\mathrm dx=\frac{e^{1/9}-1}{e^{1/9}}](https://tex.z-dn.net/?f=P%28X%5Cle1%29%3D%5Cdisplaystyle%5Cint_%7B-%5Cinfty%7D%5E1f_X%28x%29%5C%2C%5Cmathrm%20dx%3D%5Cfrac29%5Cint_0%5E1xe%5E%7B-x%5E2%2F9%7D%5C%2C%5Cmathrm%20dx%3D%5Cfrac%7Be%5E%7B1%2F9%7D-1%7D%7Be%5E%7B1%2F9%7D%7D)
Then
![\boxed{P(1\le X\le3)=\dfrac{e^{8/9}-1}e\approx0.527}](https://tex.z-dn.net/?f=%5Cboxed%7BP%281%5Cle%20X%5Cle3%29%3D%5Cdfrac%7Be%5E%7B8%2F9%7D-1%7De%5Capprox0.527%7D)