Answer:
V = 44.85 L
Explanation:
Given data:
Volume of H₂ = ?
Number of moles of H₂ = 2.0 mol
Given temperature = 273.15 K
Given pressure = 1 atm
Solution:
Formula:
PV = nRT
P = Pressure
V = volume
n = number of moles
R = general gas constant = 0.0821 atm.L/ mol.K
T = temperature in kelvin
By putting values,
1 atm × V = 2.0 mol × 0.0821 atm.L/ mol.K × 273.15 K
V = 44.85 atm.L / 1 atm
V = 44.85 L
Answer:
There is an overall release of energy when bonds form.
Explanation:
There is a general release of energy when bonds form. This energy is called bond energy.
Bond energy is involved in the breakdown or formation of one or more bonds between atoms of a molecule. Atoms bond with each other to achieve their electronic stability, that is, they move from a higher energy situation to a lower energy one. With this we can state that when the bond between atoms is formed, energy is released; therefore, its breakdown depends on energy absorption.
Answer:
The bronsted- Lowry acid is H₂PO₄⁻
Explanation:
Bronsted-Lowry acid donates a proton (H⁺)
H₂PO₄⁻ + OH⁻ → HPO₄²⁻ + H₂O
In the reaction above, H₂PO₄⁻ is donating the proton to OH⁻ resulting in H₂O and the deprotonated species. This makes it a bronsted-Lowry acid.
Base + Acid = Water + Salt
It makes salt water... water and potassium sulfate
Balanced rxn is:
2KOH + H2SO4 = 2H2O + KSO4